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Preface

This book presents some results concerning existence of solutions and exact controlla-

bility for the wave equation in domains cylindrical and non cylindrical. There is one

chapter dedicated to the Timoshenko system.
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and by his constructive remarks. We also register our thanks the ” Editor da Universidade

Estadual da Paráıba,” for the inclusion of this book in the collection of its publications.

Campina Grande - PB, October, 2013
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Introduction

This book is part of lectures given by one of the authors in 1992/93 on Partial Differential

Equations at Instituto de Matemática, UFRJ, Rio de Janeiro, RJ.

In order to fix the notation and terminology we will do a brief introduction to the

spaces Wm,p(Ω). For a complete information of these subjects, the reader can look Lions

[32], Medeiros-Rivera [50].

In the study of strong solution, Section I, we used general methods which could be

applied even in the non linear case. However in the linear case using eigenvectors we

obtain an easier proof.

Let us represent by Ω a bounded open set of Rn with boundary Γ. By Q we represent

the cylinder Ω×]0, T [, T > 0 real number. For 1 ≤ p < +∞, we denote by Lp(Ω) the space

of real functions v measurable in Ω such that the power p, i.e. |v|p, is Lebesgue integrable
in Ω. This is a Banach space with the norm

||v||pLp(Ω) =

∫

Ω

|v(x)|p dx.

When p = ∞, L∞(Ω) means the space of all essentially bounded real functions in Ω, with

the norm:

||v||∞ = ess sup
x∈Ω

|v(x)|.

We prove that L∞(Ω) is a Banach space.

When p = 2 we have a Hilbert space L2(Ω) with the inner product

(u, v) =

∫

Ω

u(x)v(x) dx,

and induced norm

|v|2 =
∫

Ω

|v(x)|2 dx.

By C∞
0 we represent the space of real function defined in Ω, infinitely differentiable and

with compact support in Ω. By D(Ω) we represent the space of C∞
0 (Ω) with the notion

v
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vi Contents

of convergence: φn and all its derivatives converge uniformly to φ and its derivatives in

K. A distribution on Ω, as defined by Laurent Schwartz, is a continuous linear form T on

D(Ω). Its derivative of order α, DαT , is defined, for each α, by

⟨DαT, φ⟩ = (−1)|α|⟨T,Dαφ⟩,

for all φ ∈ D(Ω). Note that ⟨T, φ⟩ is the evaluation of T in φ, i.e. T (φ).

By Wm,p(Ω) we represent the Sobolev spaces of order m, that is, the space of all real

functions v ∈ Lp(Ω) such that Dαv ∈ Lp(Ω) for all |α| ≤ m. In Wm,p(Ω) we define the

norm:

||v||pm,p =
∑
|α|≤m

∫

Ω

|Dαv(x)|p dx.

It follows that Wm,p(Ω) with this norm is a Banach space. By Wm,p
0 (Ω) we represent the

closure of D(Ω) in Wm,p(Ω).

When p = 2, the space Wm,2(Ω) is represented by Hm(Ω), which is a Hilbert space

with the inner product

(u, v) =
∑
|α|≤m

∫

Ω

Dαu(x) ·Dαv(x) dx

and norm:

|v|2m,2 =
∑
|α|≤m

∫

Ω

|Dαv(x)|2 dx.

In particular, we use, frequently, in this book, the spaces H1(Ω) and H1
0 (Ω). We have

H1(Ω) =

{
v ∈ L2(Ω);

∂v

∂xi

∈ L2(Ω), i = 1, 2, . . . , n

}

with the inner product

((u, v)) =

∫

Ω

u(x)v(x) dx+

∫

Ω

∇u(x) · ∇v(x) dx,

and norm:

||v||2 =
∫

Ω

|v(x)|2 dx+

∫

Ω

|∇v(x)|2 dx.

By ∇ we represent the gradient operator. In H1
0 (Ω) we obtain an equivalent norm given

by

||v||2 =
∫

Ω

|∇v(x)|2 dx.

Let us consider the Laplace operator ∆ defined by the triplet {H1
0 (Ω), L

2(Ω); ((·, ·))}.
Its domain is, for regular Γ,

D(−∆) = {v ∈ L2(Ω);∆v ∈ L2(Ω)} = H1
0 (Ω) ∩H2(Ω).

10
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Contents vii

When Γ is of class C2 we prove that the normH2(Ω) defined inH1
0 (Ω)∩H2(Ω) is equivalent

to the norm

|v|2∆ =

∫

Ω

|∆v(x)|2 dx,

that is, the norm defined by the Laplace’s operator. By this reason, we consider H1
0 (Ω) ∩

H2(Ω) with the norm |v|∆ .

Given a Banach space X and a real number T > 0, we represent by Lp(0, T ;X), with

1 ≤ p < ∞, the space of vector functions v : ]0, T [→ X, measurable and such that ||v(t)||pX
is integrable in ]0, T [. In Lp(0, T ;X) we define the norm:

||v||pLp(0,T ;X) =

∫ T

0

||v(t)||pX dt.

As in numerical case we define L∞(0, T ;X) with the norm:

||v||L∞(0,T ;X) = ess sup
0<t<T

||v(t)||X .

We prove that Lp(0, T ;X), 1 ≤ p ≤ ∞ are Banach’s spaces.

Note that we represent the inner product and norm, respectively, in L2(Ω) and H1
0 (Ω)

by the notations: (·, ·); | · |; ((·, ·)) and || · ||.
We also appreciate the suggestions of Ricardo Fuentes about Chapter 8. To Wilson

Góes my thanks for the beautiful work of TEX.
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Epigraph

“... la troisième, de conduire par ordre mes pensées, en commençant par les objects

les plus simples, et les plus aisés a connaitre, pour monter peu à peu, come par

degrés, jusqu’á à la connaissance des plus composés...”

René Descartes – Discours de la Méthode
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Chapter 1

Strong Solutions

1.1 Strong Solutions

This section is dedicated to solve the following boundary value problem:

Given

ϕ0 ∈ H1
0 (Ω) ∩H2(Ω); ϕ1 ∈ H1

0 (Ω) and f ∈ L1(0, T ;H1
0 (Ω)),

find a numerical function u : Q → R satisfying the conditions:

∣∣∣∣∣∣∣∣

ϕ′′ −∆ϕ = f a.e. in Q,

ϕ = 0 on Σ,

ϕ(x, 0) = ϕ0(x), ϕ′(x, 0) = ϕ1(x) on Ω.

(*)

Note that ϕ′ is
∂ϕ

∂t
and ϕ(t) is the function ϕ(t) : x → ϕ(x, t). Consequently ϕ(x, 0) can

be written ϕ(0). Thus the initial data is ϕ(0) = ϕ0 and ϕ′(0) = ϕ1. The following theorem

solve the problem.

Theorem 1.1 (Existence and Uniqueness) If ϕ0 ∈ H1
0 (Ω) ∩H2(Ω); ϕ1 ∈ H1

0 (Ω) and

f ∈ L1(0, T ;H1
0 (Ω)), there exists only one function ϕ : Q → R such that:

ϕ ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)) (1.1)

ϕ′ ∈ L∞(0, T ;H1
0 (Ω)) (1.2)

ϕ′′ ∈ L1(0, T ;L2(Ω) (1.3)

ϕ′′ −∆ϕ = f a.e. in Q (1.4)

ϕ(0) = ϕ0 and ϕ′(0) = ϕ1 (1.5)

1
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2 Strong Solutions

Proof: Let (wν)ν∈N , (λν)ν∈N be, respectively, the eigenfunctions and the eigenvalues of

the spectral problem

((wj, v)) = λj(wj, v) for all v ∈ H1
0 (Ω).

Approximated Problem. Let us consider the m-dimensional subspace of H1
0 (Ω) ∩

H2(Ω) denoted by Vm = [w1, w2, . . . , wm], generated by the m-first eigenfunctions wν ,

ν = 1, 2, . . . ,m, . . . . Then, we propose the approximated problem:

������������

Find ϕm(t) ∈ Vm , such that:

(ϕ′′
m(t), v) + ((ϕm(t), v)) = (f(t), v) for all v ∈ Vm .

ϕm(0) = ϕ0
m , converges to ϕ0 in H1

0 (Ω) ∩H2(Ω).

ϕ′
m(0) = ϕ1

m converges to ϕ1 in H1
0 (Ω).

(1.6)

Remark 1.1 Observe that if ϕm(t) ∈ Vm then

ϕm(t) =
m∑
i=1

gi(t)wi , (1.7)

where gi(t) for 1 ≤ i ≤ m, are determined by the equations (1.6)2 . When we substitute

ϕm(t), given by (1.7), in (1.6)2 we obtain, for v = wj , 1 ≤ j ≤ m,

g′′j (t) + λjgj(t) = (f, wj), 1 ≤ i ≤ m, (1.8)

which is a system of m ordinary differential equations of second order with constants

coefficients λj .

The initial conditions for (1.8) are obtained by the conditions (1.6)3 and (1.6)4. We

consider H1
0 (Ω) ∩ H2(Ω) with the equivalent norm defined by the Laplace operator, since

Γ is regular. The approximations for ϕ0 and ϕ1 are:

ϕ0
m =

m∑
i=1

(ϕ0, wi)wi and ϕ1
m =

m∑
i=1

(ϕ1, wi)wi . (1.9)

Then the initial conditions for (1.8) are:

gj(0) = (ϕ0, wj) and g′j(0) = (ϕ1, wj). (1.10)

The system (1.8) with initial conditions (1.10) has only one solution defined in [0, T ].

Consequently the system (1.6) has solution ϕm(t) defined in [0, T ]. In the next step we

obtain a priori estimates.
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1.1. Strong Solutions 3

First a priori estimate. Consider v = 2ϕ′
m(t) in (1.6)2. We obtain:

d

dt
(|ϕ′

m(t)|2 + ||ϕm(t)||2) = 2(f(t), ϕ′
m(t)).

Integrating from 0 to t ≤ T , we get:

|ϕ′
m(t)|2 + ||ϕm(t)||2 ≤ |ϕ1

m|2 + ||ϕ0
m|2 +

∫ T

0

|f(s)| ds+
∫ t

0

|f(s)| |ϕ′
m(s)|2 ds.

By Gronwall’s inequality, it follows:

|ϕ′
m(t)|2 + ||ϕm(t)||2 < C1 for 0 ≤ t ≤ T. (1.11)

Second a priori estimate. By the choice of (wν)ν∈N , it follows that −∆ϕ′
m(t) ∈ Vm.

Then it is correct to take v = −2∆ϕ′
m(t) in (1.6)2 , obtaining:

d

dt
(|∇ϕ′

m(t)|2 + |∆ϕm(t)|2) = 2(∇f(t),∇ϕ′
m(t)).

Integrating this equality from 0 to t ≤ T , we obtain:

|∇ϕ′
m(t)|2 + |∆ϕm(t)|2 ≤ |∇ϕ1

m|2 + |∆ϕ0
m|2+

+

∫ T

0

|∇f(s)| ds+
∫ t

0

|∇f(s)| |∇ϕ′
m(s)|2 ds.

By hypothesis |∇f(s)| ∈ L1(0, T ), then by Gronwall’s inequality applied to the last ine-

quality we obtain:

|∇ϕ′
m(t)|2 + |∆ϕm(t)|2 < C2 , for 0 ≤ t ≤ T. (1.12)

Then from (1.11) and (1.12) we obtain:

∆ϕm is bounded in L∞(0, T ;L2(Ω)) (1.13)

ϕ′
m is bounded in L∞(0, T ;H1

0 (Ω)) (1.14)

We extract a subsequence (ϕµ)µ∈N of (ϕm)m∈N , such that:

∆ϕm ⇀ ξ = ∆ϕ weak star in L∞(0, T ;L2(Ω)) (1.15)

ϕ′
µ ⇀ ϕ′ weak star in L∞(0, T ;H1

0 (Ω) and L∞(0, T ;L2(Ω)). (1.16)

Remark 1.2 The first estimate gives ϕµ ⇀ ϕ weak star in L∞(0, T ;H1
0 (Ω)), then in the

sense of distribution on Q. Therefore, ∆ϕm → ∆ϕ in the sense of distributions on Q. By

(1.15) we obtain ∆ϕµ → ξ in the sense of distributions on Q, then ξ = ∆ϕ. �
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4 Strong Solutions

By (1.16) we obtain (ϕ′′
µ(t), v) ⇀

d

dt
(ϕ′(t), v) in D′(0, T ) for all v ∈ L2(Ω). Then, fix

m in (1.6)2 and consider the sequence ϕµ as solution of the approximated problem (1.6)

and let µ → ∞. We obtain:

d

dt
(ϕ′(t), v)− (∆ϕ(t), v) = (f(t), v)

in the sense of D′(0, T ), for all v ∈ Vm . By density it is true for all v ∈ H1
0 (Ω) ∩H2(Ω).

In particular, for all v ∈ D(Ω). Then we have:

−
∫ T

0

∫

Ω

ϕ′(t)vθ′ dxdt =

∫ T

0

∫

Ω

∆ϕ(t)vθ dxdt =

∫ T

0

∫

Ω

f(t)vθ dxdt

for all v ∈ D(Ω), θ ∈ D(0, T ). By density of the finite sums of products vθ, v ∈ D(Ω) and

θ ∈ D(0, T ) in D(Q), we obtain:

−
∫

Q

ϕ′ψ′ dxdt−
∫

Q

∆ϕψ dxdt =

∫

Q

fψ dxdt

for all ψ ∈ D(Q). Then,

⟨ϕ′′, ψ⟩ =
∫

Q

(∆ϕ+ f)ψ dxdt,

and it follows that the distribution ϕ′′ is defined on Q by ∆ϕ+ f ∈ L1(0, T ;L2(Ω)). Then

we identify ϕ′′ to a function of L1(0, T ;L2(Ω)) and still represent this function by ϕ′′. We

have: ∫

Q

(ϕ′′ −∆ϕ− f)ψ dxdt = 0

for all ψ ∈ D(Q). Whence, Lemma of Du Bois Raymond implies:

ϕ′′ −∆ϕ = f a.e. in Q.

Then we prove (1.1), (1.2) and (1.3) of the Theorem 1.1. �

To prove uniqueness, let ϕ, �ϕ be two solutions in the conditions of the Theorem 1.1. It

follows that ζ = ϕ− �ϕ is solution of ζ ′′ −∆ζ = 0 a.e. in Q, ζ(0) = 0 and ζ ′(0) = 0. Since,

by (1.16), ζ ′ ∈ L∞(0, T ;H1
0 (Ω)) make sense the integrals

∫

Ω

ζ ′′ζ ′ dx−
∫

Ω

∆ζζ ′ dx = 0.

Whence,
d

dt
(|ζ ′(t)|2 + ||ζ(t)||2) = 0,

what implies, ζ = 0 on Q. �
The solution ϕ obtained in Theorem 1.1 is called strong solution of the mixed problem

(*), or for the linear wave equation.
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1.1. Strong Solutions 5

Theorem 1.2 (Energy Inequality) If ϕ is strong solution, then we have the energy

inequality

|∇ϕ′(t)|2 + |∆ϕ(t)|2 ≤ |∇ϕ1|2 + |∆ϕ0|2 + 2

∫ t

0

(∇f(s),∇ϕ′(s)) ds. (1.17)

Proof: Taking v = −∆ϕ′
m(t) ∈ Vm in the approximated equations (1.6)2 , we obtain:

|∇ϕ′
m(t)|2 + |∆ϕm(t)|2 = |∇ϕ1

m|2 + |∆ϕ0
m|2 + 2

∫ t

0

(∇f(s),∇ϕ′
m(s)) ds. (1.18)

Let θ > 0 be an step function on ]0, T [. In (1.18) take m = µ, multiply both sides by θ

and integrate on [0, T ]. We obtain:

∫ T

0

|∇ϕ′
µ(t)|2θ(t) dt+

∫ T

0

|∆ϕµ(t)|2θ(t) dt =
∫ T

0

|∇ϕ1
µ|2θ(t) dt+

+

∫ T

0

|∆ϕ0
µ|2θ(t) dt+ 2

∫ T

0

θ(t)

∫ t

0

(∇f(s),∇ϕ′
µ(s)) dsdt.

(1.19)

By the convergences (1.15), (1.16) and the lower semicontinuity of the norms with

respect to the weak convergence, we obtain:

∫ T

0

|∇ϕ′(t)|2θ(t) dt ≤ lim
µ

∫ T

0

|∇ϕ′
µ(t)|2θ(t) dt (1.20)

∫ T

0

|∆ϕ(t)|2θ(t) dt ≤ lim
µ

∫ T

0

|∆ϕµ(t)|2θ(t) dt (1.21)

Taking lim
µ

in both sides of (1.19), taking in account (1.20) and (1.21) and noting that

lim u+ lim v ≤ lim (u+ v), we obtain:

∫ T

0

|∇ϕ′(t)|2θ(t) dt+
∫ T

0

|∆ϕ(t)|2θ(t) dt ≤

≤
∫ T

0

|∇ϕ1|2θ(t) dt+
∫ T

0

|∆ϕ0|2θ(t) dt+

+2

∫ T

0

(∫ t

0

(∇f(s),∇ϕ′(s)) ds

)
θ(t) dt

(1.22)

Remark 1.3 Let be v ∈ L1(0, T ). We say that s ∈ ]0, T [ is a Lebesgue point of v, if for

h > 0 such that ]s− h, s+ h[⊂ ]0, T [ then

lim
h→0

1

2h

∫ s+h

s−h

v(ξ) dξ = v(s).
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6 Strong Solutions

It is proved that if v ∈ L1(0, T ), then almost all points s of ]0, T [ are Lebesgue’s points of

v.

Let us return to (1.22) and observe that the functions in the integrands of (1.22) are

L1(0, T ). If s ∈ ]0, T [, let us consider the step function θh(t) = θ(t) on ]s−h, s+h[⊂ ]0, T [

and zero in the complement. Then θh is permissible in (1.22). Substituting θ by θh in

(1.22), dividing both sides by 2h and letting h → 0 we obtain, for t ∈ [0, T ], because θ > 0:

|∇ϕ′(t)|2 + |∆ϕ(t)|2 ≤ |∇ϕ1|2 + |∆ϕ0|2 + 2

∫ t

0

(∇f(s),∇ϕ′(s)) ds (1.23)

a.e. in [0, T ]. �

Before to prove another form of energy inequality (1.23) we prove a Gronwall’s inequa-

lity, Brezis [4] or Gomes [17].

Lemma 1.1 Let m ∈ L1(0, T,R) such that m ≥ 0 a.e. in ]0, T [ and a ≥ 0 real constant.

Suppose g ∈ L∞(0, T ), g ≥ 0 on ]0, T [ verifying the inequality:

1

2
g(t)2 ≤ 2a2 + 2

∫ t

0

m(s)g(s) ds

for all t ∈]0, T [. Then:

g(t) ≤ 2

(
a+

∫ t

0

m(s) ds

)
in [0, T ].

Proof: For ε > 0 let us consider the function ψε > 0 in [0, T ] defined by:

ψε(t) = 2(a+ ε)2 + 2

∫ t

0

m(s)g(s) ds.

Whence,
d

dt
ψε(t) = 2m(t)g(t).

We have
1

2
g2 ≤ ψε or g(t) ≤

√
2
√
ψε(t). Since ψε is absolutely continuous and ψε(t) ≥ 2ε2,

we have
d

dt
ψε(t)

1/2 =
1

2ψε(t)1/2
dψε(t)

dt
≤

√
2m(t).

Integrating this inequality from 0 to t, we have:

ψε(t)
1/2 ≤ ψε(0)

1/2 +
√
2

∫ t

0

m(s) ds for all t ∈ [0, T ].

Since g(t) ≤
√
2ψε(t)

1/2, 0 ≤ t ≤ T , we obtain, from the above inequality, after ε → 0,

g(t) ≤ 2

(
a+

∫ t

0

m(s) ds

)
in [0, T ]. (1.24)

�
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1.1. Strong Solutions 7

Corollary 1.1 If ϕ is the strong solution of Theorem 1.1, we have the inequality:

|∇ϕ′(t)|+ |∆ϕ(t)| ≤ C

(
|∇ϕ1|+ |∆ϕ0|+

∫ t

0

|∇f(s)| ds
)

(1.25)

in [0, T ].

Proof: In fact from (1.23) we obtain

(|∇ϕ′(t)|+ |∆ϕ(t)|)2 ≤ 2(|∇ϕ1|+ |∆ϕ0|)2 + 4

∫ t

0

|∇f(s)| |∇ϕ′(s)|ds.

If we define:

g(t) = |∇ϕ′(t)|+ |∆ϕ(t)|,

we obtain from the above inequality:

1

2
g(t)2 ≤ 2a2 + 2

∫ t

0

m(s)g(s) ds,

where

α = |∇ϕ1|+ |∆ϕ0|.

By Lemma 1.1 we obtain (1.25). �

Note that if the boundary Γ of Ω is C2, then the norm of H1
0 (Ω)∩H2(Ω) and that one

given by the Laplace operator are equivalents, as we already seen in Introduction.

We then obtain from (1.25) the inequality:

||ϕ′||L∞(0,T ;H1
0 (Ω)) + ||ϕ||L∞(0,T ;H1

0 (Ω)∩H2(Ω)) ≤
≤ C

(
||ϕ1||H1

0 (Ω) + ||ϕ0||)H1
0 (Ω)∩H2(Ω) + ||f ||L1(0,T ;H1

0 (Ω))

)
.

(1.26)

�

Theorem 1.3 (Regularity) The strong solution ϕ = ϕ(x, t) has the regularity:

ϕ ∈ C0([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];H1

0 (Ω)). (1.27)

Proof: The strong solution ϕ, which exists by Theorem 1.1, is weak limit of a sequence

of approximations of the type:

ϕm(t) =
m∑
i=1

gi(t)wi (1.28)

with gi(t), 1 ≤ i ≤ m, solutions of the following system of ordinary differential equations:

g′′j (t) + λjgj(t) = (f, wj), 1 ≤ j ≤ m, (1.29)
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8 Strong Solutions

plus initial conditions:

gj(0) = (ϕ0, wj) and g′j(0) = (ϕ1, wj). (1.30)

The solution of this initial value problem is given, Lagrange’s method of variation of

constants, by:

gj(t) = (ϕ0, wj) cos
√
λjt+

1√
λj

(ϕ1, wj) sin
√
λjt+

+
1√
λj

∫ t

0

(f(s), wj) sin
√
λj (t− s) ds,

1 ≤ j ≤ m.

Whence, the approximated solution is given by:

ϕm(x, t) =
m∑
i=1

[
(ϕ0, wi) cos

√
λit+

1√
λi

(ϕ1, wi) sin
√
λit+

+
1√
λi

∫ t

0

(f(s), wi) sin
√
λi (t− s) ds

]
wi .

(1.31)

In the proof we suppose f regular to use Parseval identity. The general case L1(0, T ;H1
0 (Ω))

we approximated by regular case.
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1√
λj
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√
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1√
λj

∫ t

0
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√
λj (t− s) ds,

1 ≤ j ≤ m.
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1√
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Step 1. ϕ ∈ C0([0, T ];H1
0 (Ω) ∩H2(Ω)).

In fact, it is sufficient to prove that (ϕm)m∈N is a Cauchy’s sequence in C0([0, T ];H1
0 (Ω)∩

H2(Ω)). Note that we consider inH1
0 (Ω)∩H2(Ω) the norm defined by the Laplace operator.

In fact, let us consider m,n ∈ N and suppose m > n. We have:

||ϕm(t)− ϕn(t)||2V =

�����
m∑

i=n+1

gi(t)wi

�����
2

V

=

�����
m∑

i=n+1

gi(t)∆wi

�����
2

L2(Ω)

.

Noting that −∆wi = λiwi , we obtain by Pithagoras’ theorem:

||ϕm(t)− ϕn(t)||2V =
m∑

i=n+1

|gi(t)λi|2R.

We have:

|gi(t)λi|2R = |(ϕ0, wi)λi cos
√
λit +

1√
λi

(ϕ1, wi)λi sin
√

λit+

+
1√
λi

∫ t

0

(f(s), wi)λi sin
√
λi (t− s) ds|2R ≤

≤
{
|(ϕ0, wi)λi|R +

����
1√
λi

(ϕ1, wi)λi

����
R
+

1√
λi

∫ t

0

|(f(s), λiwi)|R ds
}2

.

Applying twice the elementary inequality (a+ b)2 ≤ 2a2 + 2b2

|gi(t)λi|2R ≤ 4|(∆ϕ0, wi)|2R + 4

����(ϕ1, wi)
λi√
λi

����
2

R
+

+2

(∫ T

0

����(f(s), wi)
λi√
λi

����ds
)2

.

(1.32)

Note that ϕ0 =
∞∑
i=1

((
ϕ0,

wi

λi

))

V

wi

λi

and by Pithagoras’ theorem

||ϕ0||2V =
∞∑
i=1

����
((

ϕ0,
wi

λi

))

V

����
2

R
·

We know that

((
ϕ0,

wi

λi

))

V

=

(
∆ϕ0,∆

wi

λi

)
= −(∆ϕ0, wi). Whence

m∑
i=n+1

|(∆ϕ0, wi)|2 converges to zero when m,n → ∞. (1.33)

For the second term of the right hand side of (1.32) we obtain:

ϕ1 =
∞∑
i=1

((
ϕ1,

wi√
λi

))
wi√
λi

,
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noting that (( , )) is the inner product in H1
0 (Ω). Then,

||ϕ1||2 =
∞∑
i=1

����
((

ϕ1,
wi√
λi

))����
2

R

we have, ((
ϕ1,

wi√
λi

))
=

(
∇ϕ1,∇ wi√

λi

)
= −(ϕ1, wi)

λi√
λi

whence,
m∑

i=n+1

����(ϕ1, wi)
λi√
λi

����
2

R
converges to zero when m,n → ∞. (1.34)

We know that f(s) ∈ H1
0 (Ω), then:

f(s) =
∞∑
i=1

((
f(s),

wi√
λi

))
wi√
λi

·

It follows that:

||f(s)||2 =
∞∑
i=1

����(f(s), wi)
λi√
λi

����
2

R
·

Then, by Schwarz’s inequality:

(∫ T

0

����(f(s), wi)
λi√
λi

���� ds
)2

≤ T

∫ T

0

����(f(s), wi)
wi√
λi

����
2

R
ds.

Therefore, for the last term of the right hand side of (1.32), we have:

m∑
i=n+1

{∫ T

0

����(f(s), wi)
λi√
λi

���� ds
}2

≤ T

∫ T

0

m∑
i=n+1

����(f(s), wi)
λi√
λi

����
2

ds, (1.35)

which converges to zero when m,n → ∞, independent of t in [0, T ].

By (1.33), (1.34) and (1.35) we have, from (1.32):

m∑
i=n+1

��gi(t)λi

��2
R converges to zero when m,n → ∞.

Consequently, the sequence (ϕm(t))m∈N is such that max
0≤t≤T

||ϕm(t) − ϕn(t)||V converges to

zero when m,n → ∞ or (ϕm)m∈N is a Cauchy sequence in C0([0, T ];H1
0 (Ω)∩H2(Ω)), then

convergent and its limit ϕ, which is the strong solution, belongs to C0([0, T ];H1
0 (Ω) ∩

H2(Ω)). �

Step 2. ϕ1 ∈ C0([0, T ];H1
0 (Ω)).

The method is the same of Step 1. First we take the derivative with respect to t of the

approximated solution and obtain:

ϕ′
m(x, t) =

m∑
i=1

g′i(t)wi ,
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where

g′i(t) =− (ϕ0, wi)
√

λi sin
√
λit+ (ϕ1, wi) cos

√
λit+

+

∫ t

0

(f(s), wi) cos
√
λi(t− s) ds.

We need to prove that (ϕ′
m)m∈N is a Cauchy sequence in C0([0, T ];H1

0 (Ω)). Suppose

m > n, m,n ∈ N. We have:

||ϕ′
m(t)− ϕ′

n(t)||2 =

�����
m∑

i=n+1

g′i(t)wi

�����
2

=

�����
m∑

i=n+1

g′i(t)∇wi

�����
2

L2(Ω)

.

By Pithagoras’ theorem, we have:

||ϕ′
m(t)− ϕ′

n(t)||2 =
m∑

i=n+1

���g′i(t)
√
λi

���
2

R
.

We have, ���g′i(t)
√
λi

���
2

R
≤ 4

��(ϕ0, wi)λi

��2
R + 4

���(ϕ1, wi)
√
λi

���
2

R
+

+ 2

{∫ t

0

(f(s), wi)
√

λi ds

}2

.

(1.36)

Note that

(ϕ0, wi)λi = (∆ϕ0, wi); (ϕ1(wi)
√

λi = (ϕ1, wi)
λi√
λi

and (f(s), wi)
√
λi = (f(s), wi)

λi√
λi

·

Therefore, by the same argument used to obtain (1.33), (1.34) and (1.35) we have that

(ϕ′
m)m∈N is Cauchy’s sequence in C0([0, T ];H1

0 (Ω)) and it follows that ϕ′ ∈ C0([0, T ];H1
0 (Ω)).

�
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12 Strong Solutions

Chapter 2

Weak Solutions

2.1 Weak Solutions

We consider now the mixed problem of Chapter 1, but under weak hypotheses on the

initial conditions ϕ0, ϕ1.

Theorem 2.1 Consider

ϕ0 ∈ H1
0 (Ω), ϕ1 ∈ L2(Ω) and f ∈ L1(0, T ;L2(Ω)). (2.1)

There exists only one function ϕ : Q → R satisfying the conditions:

ϕ ∈ L∞(0, T ;H1
0 (Ω)) (2.2)

ϕ′ ∈ L∞(0, T ;L2(Ω)) (2.3)

d

dt
(ϕ′(t), v) + ((ϕ(t), v)) = (f(t), v) (2.4)

in the sense of D′(0, T ), for all v ∈ H1
0 (Ω)

ϕ′′ ∈ L1(0, T ;H−1(Ω)) and ϕ′′ −∆ϕ = f in L1(0, T ;H−1(Ω)) (2.5)

ϕ(0) = ϕ0, ϕ′(0) = ϕ1. (2.6)

The function ϕ obtained by Theorem 2.1 is called weak solution of the mixed problem

(*).

Proof: We prove this theorem approximating the weak solutions by a sequence of strong

solutions. In fact, let us consider the approximations of ϕ0, ϕ1 and f
∣∣∣∣∣∣∣∣

ϕ0
m ∈ H1

0 (Ω) ∩H2(Ω) such that ϕ0
m → ϕ0 in H1

0 (Ω),

ϕ1
m ∈ H1

0 (Ω) such that ϕ1
m → ϕ1 in L2(Ω),

fm ∈ C0([0, T ];C1(Ω)) such thatfm → f in L1(0, T ;L2(Ω)).

(2.7)

13
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14 Weak Solutions

Taking ϕ0
m , ϕ1

m and fm as data, Theorem 1.1 of Chapter 1 says that there exists only

one function ϕm : Q → R satisfying the conditions:

������������������

ϕm ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)),

ϕ′
m ∈ L∞(0, T ;H1

0 (Ω)),

ϕ′′
m ∈ L∞(0, T ;L2(Ω)),

(ϕ′′
m(t), v) + ((ϕm(t), v)) = (fm(t), v), in ]0, T [ ,

for all v ∈ L2(0, T ;H1
0 (Ω)),

ϕm(0) = ϕ0
m , ϕ′

m(0) = ϕ1
m.

(2.8)

The next step consists in obtaining precise estimates for ϕm , given by (2.8), such that

the limit is the solution claimed in Theorem 2.1.

Taking v = ϕ′
m(t) in (2.8)4 , we obtain:

d

dt
(|ϕ′

m(t)|2 + ||ϕm(t)||2) = 2(f(t), ϕ′
m(t))

or

|ϕ′
m(t)|2 + ||ϕm(t)||2 ≤ |ϕ1

m|2 + ||ϕ0
m||2 +

∫ T

0

|fm(t)| dt+
∫ t

0

|fm(s)| |ϕ′
m(s)|2 ds.

By the convergences (2.7), we get from the above inequality:

|ϕ′
m(t)|2 + ||ϕm(t)||2 ≤ K +

∫ t

0

|fm(s)| |ϕ′
m(s)|2 ds

for all t ∈ [0, T ]. By Gronwall inequality it implies:

|ϕ′
m(t)|2 + ||ϕm(t)||2 < C, for all t ∈ [0, T ]. (2.9)

From (2.9) follows the existence of a subsequence (ϕn)n∈N such that:

������
ϕn converges to ϕ weak star in L∞(0, T ;H1

0 (Ω))

ϕ′
n converges to ϕ′ weak star in L∞(0, T ;L2(Ω))

(2.10)

By (2.8)4 we have:
d

dt
(ϕ′

n(t), v) + ((ϕn(t), v)) = (fn(t), v) (2.11)

for all v ∈ H1
0 (Ω). Multiplying both sides of (2.11) by θ ∈ D(0, T ) and integrating by

parts, we obtain:

−
∫ T

0

(ϕ′
n(t), v)θ

′(t) dt+

∫ T

0

((ϕn(t), v))θ(t) dt =

∫ T

0

(fn(t), v)θ(t) dt (2.12)
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for all v ∈ H1
0 (Ω). Taking the limit in (2.13) when n → ∞, taking in account (2.10) and

(2.7)3 , we obtain a function ϕ : Q → R such that:

�������������

ϕ′ ∈ L∞(0, T ;H1
0 (Ω)),

ϕ′ ∈ L∞(0, T ;L2(Ω)),

d

dt
(ϕ′(t), v) + ((ϕ(t), v)) = (f(t), v)

in D′(0, T ), for all v ∈ H1
0 (Ω).

(2.13)

We will prove that ϕ′′ ∈ L1(0, T ;H−1(Ω)). In fact, from (2.12), when n goes to infinity,

we obtain:

−
∫ T

0

(ϕ′(t), v)θ′(t) dt+

∫ T

0

⟨−∆ϕ(t), v⟩θ(t) dt =
∫ T

0

(f(t), v)θ(t) dt (2.14)

for all v ∈ H1
0 (Ω) and θ ∈ D(0, T ). Then, defining g(t) = f(t) − ∆ϕ(t) ∈ H−1(Ω), we

obtain from (2.14):

−
∫ T

0

ϕ′(t)θ′(t) dt =

∫ T

0

g(t)θ(t) dt. (2.15)

By (2.2) and (2.3) it follows that ϕ′, g ∈ L1(0, T ;H−1(Ω)) and satisfies (2.15). Then by

Temam [66] Lemma 1.1 it follows that:

ϕ′(t) = ξ +

∫ t

0

g(s) ds, ξ ∈ H−1(Ω) constant. (2.16)

Whence

ϕ′ ∈ C0([0, T ];H−1(Ω)). (2.17)

By (2.16) we obtain:

⟨ϕ′′, θ⟩ = ⟨g, θ⟩ for all θ ∈ D(0, T ),

what implies:

ϕ′′ ∈ L1(0, T ;H−1(Ω))

and ϕ′′ = g in L1(0, T ;H−1(Ω)) that is,

ϕ′′ −∆ϕ = f in L1(0, T ;H−1(Ω)). (2.18)

�

To complete the proof we need to verify the initial conditions and the uniqueness.

First, let us prove that u(0) = u0 . In fact, we have:

ϕm(t) = ϕm(0) +

∫ t

0

ϕ′
m(s) ds. (2.19)
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16 Weak Solutions

Taking norm in L2(Ω) of both sides in (2.19), we obtain:

ϕm is bounded in L∞(0, T ;L2(Ω)). (2.20)

Then, there exists a subsequence (ϕν)ν∈N such that:
∫ T

0

(ϕν(t), v)θ
′(t) dt converges to

∫ T

0

(ϕ(t), v)θ′(t) dt (2.21)

for all θ ∈ C1([0, T ]) such that θ(0) = 1 and θ(T ) = 0. From (2.10)2 we have:
∫ T

0

(ϕ′
ν(t), v)θ dt converges to

∫ T

0

(ϕ′(t), v)θ dt (2.22)

for θ ∈ C1([0, T ]), θ(0) = 1 and θ(T ) = 0.

By (2.21) and (2.22) we obtain:
∫ T

0

d

dt
[(ϕν(t), v)θ]dt converges to

∫ T

0

d

dt
[(ϕ(t), v)θ]dt

or (ϕν(0), v) converges to (ϕ(0), v). Note that ϕ(0) make sense. We know that (ϕν(0), v)

converges to (ϕ0, v) for all v ∈ H1
0 (Ω). Then ϕ(0) = ϕ0. �

We prove now that ϕ′(0) = ϕ1. In fact, let be δ > 0 and consider the function θδ

defined by:

θδ(t) =

������
− t

δ
+ 1 if 0 ≤ t ≤ δ

0 if δ < t ≤ T

which belongs to H1(0, T ). Multiplying both sides of the approximated equation (2.8)4 by

θδ(t) and integrating by parts we obtain:

−(ϕ′
ν(0), v) +

1

δ

∫ δ

0

(ϕ′
ν(t), v) dt+

∫ δ

0

((ϕν(t), v))θδ dt =

=

∫ δ

0

(f(t), v)θδ dt,

(2.23)

for the subsequence (ϕν)ν∈N obtained from (2.20). If ν → ∞ in (2.23) we get:

−(ϕ1, v) +
1

δ

∫ δ

0

(ϕ′(t), v) dt+

∫ δ

0

((ϕ(t), v))θδ dt =

∫ δ

0

(f(t), v)θδ dt. (2.24)

Letting δ → 0 in (2.24) we obtain (ϕ′(0), v) = (ϕ0, v) for all v ∈ H1
0 (Ω) or ϕ(0) = ϕ1 in

H1
0 (Ω). �

To prove uniqueness, let be ϕ and �ϕ two weak solutions given by Theorem 2.1. Then

w = ϕ− �ϕ is weak solution of
��������

w′′ −∆w = 0 on Q,

w = 0 on Σ,

w(0) = 0, w′(0) = 0.

(2.25)
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θδ(t) and integrating by parts we obtain:

−(ϕ′
ν(0), v) +

1

δ

∫ δ

0

(ϕ′
ν(t), v) dt+

∫ δ

0

((ϕν(t), v))θδ dt =

=

∫ δ

0

(f(t), v)θδ dt,

(2.23)

for the subsequence (ϕν)ν∈N obtained from (2.20). If ν → ∞ in (2.23) we get:

−(ϕ1, v) +
1

δ

∫ δ

0

(ϕ′(t), v) dt+

∫ δ

0

((ϕ(t), v))θδ dt =

∫ δ

0

(f(t), v)θδ dt. (2.24)

Letting δ → 0 in (2.24) we obtain (ϕ′(0), v) = (ϕ0, v) for all v ∈ H1
0 (Ω) or ϕ(0) = ϕ1 in

H1
0 (Ω). �

To prove uniqueness, let be ϕ and �ϕ two weak solutions given by Theorem 2.1. Then

w = ϕ− �ϕ is weak solution of
��������

w′′ −∆w = 0 on Q,

w = 0 on Σ,

w(0) = 0, w′(0) = 0.

(2.25)

2.1. Weak Solutions 17

Note that w′′ ∈ L1(0, T ;H−1(Ω)) and w′ ∈ L∞(0, T ;L2(Ω)), what does not permit to

consider ⟨w′′, w′⟩, duality between H−1(Ω) and H1
0 (Ω). Therefore there exists a method,

cf. Visik-Ladyzhenskaya [69], which consists in define a new function ψ, from w, such that

ψ ∈ L∞(0, T ;H1
0 (Ω)) and the energy method works. In fact, for 0 < s < T let us define:

ψ(t) =

�������
−
∫ s

t

w(σ) dσ if 0 < t < s,

0 if s ≤ t < T

where w is an weak solution of (2.25). The function ψ ∈ L2(0, T ;H1
0 (Ω)), then makes

sense: ∫ T

0

⟨w′′ −∆w,ψ⟩ dt = 0. (2.26)

Let us consider

w1(ξ) =

∫ ξ

0

w(σ) dσ.

Whence,

ψ(t) = w1(t)− w1(s)

and

ψ′(t) = w′
1(t) = w(t).

We have: ∫ s

0

⟨w′′, ψ⟩ dσ = (w′(s), ψ(s))− (w′(0), ψ(0))−
∫ t

0

(w′, ψ′) dσ.

Since ψ(s) = w′(0) = 0 we obtain:
∫ s

0

⟨w′′, ψ⟩ dσ = −1

2
|w(s)|2. (2.27)

From (2.26) and (2.27) we obtain:

−1

2
|w(s)|2 +

∫ s

0

((w,ψ)) dσ = 0. (2.28)

But, ((w,ψ)) = ((ψ′, ψ)) =
1

2

d

dt
||ψ(t)||2. Then, from (2.28) it follows:

|w(s)|2 + ||ψ(0)||2 = 0

proving that w(s) = 0 for all s ∈ [0, T ]. �

Theorem 2.2 (Energy Inequality) If ϕ is the weak solution obtained in Theorem 2.1,

then we have the energy inequality:

|ϕ′(t)|2 + ||ϕ(t)||2 ≤ |ϕ1|2 + ||ϕ0||2 + 2

∫ t

0

(f(s), ϕ′(s)) ds (2.29)

a.e. in [0, T ].
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Proof: From (2.8)4 with m = ν, taking v = ϕ′
ν(t) we obtain:

|ϕ′
ν(t)|2 + ||ϕν(t)||2 ≤ |ϕ1

ν |2 + ||ϕ2
ν ||+ 2

∫ t

0

(f(s), ϕ′
ν(s)) ds.

By the convergences (2.10) and the same argument used in the proof of Theorem 1.2,

Chapter 1, we obtain the inequality (2.29). �

Corollary 2.1 If ϕ is the weak solution which exists by Theorem 2.1, we have the inequal-

ity:

|ϕ′(t)|+ ||ϕ(t)|| ≤ C

(
|ϕ1|+ ||ϕ0||+

∫ T

0

|f(s)| ds
)

(2.30)

in [0, T ].

Proof: The same argument used to prove Corollary 1.1, of Theorem 2.1 of Chapter 1. �
From the Corollary 1.1, we obtain:

||ϕ′||L∞(0,T ;L2(Ω) + ||ϕ||L∞(0,T ;H1
0 (Ω)) ≤

≤ C
(
|ϕ1|L2(Ω) + ||ϕ0||H1

0 (Ω) + ||f ||L1(0,T ;L2(Ω))

)

�

Theorem 2.3 (Regularity of Weak Solutions) The weak solution ϕ has the following

regularity:

ϕ ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). (2.31)

Proof: Let (ϕν)ν∈N be the sequence of strong solutions that approximate the weak solution

ϕ. Then, if m,n ∈ N, m > n, we have:

(ϕ′′
m(t)− ϕ′′

n(t), v) + ((ϕm(t)− ϕn(t), v)) = (fm(t)− fn(t), v)

for all v ∈ L2(0, T ;H1
0 (Ω)), by (2.8)4 . Taking v = ϕ′

m(t)− ϕ′
n(t), we obtain

d

dt
(|ϕ′

m(t)− ϕ′
n(t)|2 + ||ϕm(t)− ϕn(t)||2) ≤

≤ |fm(t)− fn(t))|+ |fm(t)− fn(t)| |ϕ′
m(t)− ϕ′

n(t)|2.

Integrating, we obtain

|ϕ′
m(t)− ϕ′

n(t)|2 + ||ϕm(t)− ϕn(t)||2 ≤

≤ C

(
|ϕ1

m − ϕ1
n|2 + ||ϕ0

m − ϕ0
n||2 +

∫ T

0

|fm(t)− fn(t)| dt
)
.
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)

�

Theorem 2.3 (Regularity of Weak Solutions) The weak solution ϕ has the following

regularity:

ϕ ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). (2.31)

Proof: Let (ϕν)ν∈N be the sequence of strong solutions that approximate the weak solution

ϕ. Then, if m,n ∈ N, m > n, we have:

(ϕ′′
m(t)− ϕ′′

n(t), v) + ((ϕm(t)− ϕn(t), v)) = (fm(t)− fn(t), v)

for all v ∈ L2(0, T ;H1
0 (Ω)), by (2.8)4 . Taking v = ϕ′

m(t)− ϕ′
n(t), we obtain

d

dt
(|ϕ′

m(t)− ϕ′
n(t)|2 + ||ϕm(t)− ϕn(t)||2) ≤

≤ |fm(t)− fn(t))|+ |fm(t)− fn(t)| |ϕ′
m(t)− ϕ′

n(t)|2.

Integrating, we obtain

|ϕ′
m(t)− ϕ′

n(t)|2 + ||ϕm(t)− ϕn(t)||2 ≤

≤ C

(
|ϕ1

m − ϕ1
n|2 + ||ϕ0

m − ϕ0
n||2 +

∫ T

0

|fm(t)− fn(t)| dt
)
.

2.1. Weak Solutions 19

By convergence (2.7) it follows, from the above inequality, that

max
0≤t≤T

|ϕ′
m(t)− ϕ′

n(t)| converges to zero when m,n → ∞

max
0≤t≤T

||ϕm(t)− ϕn(t)|| converges to zero when m,n → ∞

Then, (ϕν)ν∈N is Cauchy sequence in C0([0, T ];H1
0 (Ω)) and (ϕ′

ν)ν∈N in C0([0, T ];L2(Ω)).

This implies that ∣∣∣∣∣∣
ϕν converges to ξ in C0([0, T ];H1

0 (Ω))

ϕν converges to ζ in C1([0, T ];L2(Ω))
(2.32)

It follows by (2.10), that ξ = ϕ, ζ = ϕ′, then we have the regularity (2.31). �
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20 Weak Solutions

Chapter 3

Hidden Regularity for Weak

Solutions

3.1 Hidden regularity for weak solutions

In this section we study behavior of the normal derivative of the weak solution ϕ at the

boundary Σ of the cylinder Q.

Consider a Hilbert space X with inner product (·, ·) and norm | · |. If v ∈ L2(0, T ;X)

and the weak derivative v′ ∈ L2(0, T ;X), then v ∈ C0([0, T ];X). It then follows that

makes sense to define:

H1
0 (0, T ;X) =

{
v ∈ L2(0, T ;X), v′ ∈ L2(0, T ;X); v(0) = v(T ) = 0

}

with inner product

((u, v))0 =

∫ T

0

(u(t), v(t)) dt+

∫ T

0

(u′(t), v′(t)) dt.

This is a Hilbert space.

By D(0, T ;X) we represent the space of vector functions φ : ]0, T [→ X, with compact

support in ]0, T [ , infinitely derivable with the usual notion of convergence defined by

Schwartz cf. Lions [32] or Medeiros-Miranda [48]. We represent by H−1(0, T ;X) the dual

of H1
0 (0, T ;X). We have the inclusions:

D(0, T ;X) ⊂ H1
0 (0, T ;X) ⊂ L2(0, T ;X) ⊂ H−1(0, T ;X) ⊂ D′(0, T ;X).

By D′(0, T ;X) we represent the dual of D(0, T ;X) and we identify L2(0, T ;X) to its dual.

The above inclusions are continuous and each space is dense in the following. We prove

21
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22 Hidden Regularity for Weak Solutions

that if v ∈ L2(0, T ;X) then the weak derivative v′ belongs to H−1(0, T ;X) cf. Miranda

[61].

When ϕ is an weak solution, cf. Chapter 2, then ϕ′ ∈ L2(0, T ;L2(Ω)). Then ϕ′′ ∈
H−1(0, T ;L2(Ω)). Therefore, −∆ϕ = f − ϕ′′ ∈ L1(0, T ;L2(Ω)) +H−1(0, T ;L2(Ω)). When

Γ is regular this implies that:

ϕ ∈ L1(0, T ;H2(Ω)) +H−1(0, T ;H2(Ω))

and the normal derivative of ϕ has the regularity:

∂ϕ

∂ν
∈ L1(0, T ;H

1
2 (Γ)) +H−1(0, T ;H

1
2 (Γ)). (3.1)

From (3.1) does not follows that
∂ϕ

∂ν
belongs to L2(0, T ;L2(Γ)) and is bounded in this

space. We shall prove, by method of multiplies, that, in fact,
∂ϕ

∂ν
is bounded in the norm

of L2(0, T ;L2(Γ)). By the reason that this regularity for
∂ϕ

∂ν
does not comes from the

properties of the weak solution ϕ given by Theorem 2.1 of Chapter 2, is that Lions [37]

called it Hidden Regularity of
∂ϕ

∂ν
· This regularity was proved by Lions, first time, in

1983 in the reference [34].

Lemma 3.1 Let be ν = (ν1, ν2, . . . , νn) the vector field of exterior normals to Γ. Then

there exists a vector field h = (h1, h2, . . . , hn) ∈ [C1(Ω)]n such that

hi = νi on Γ for i = 1, 2, . . . , n.

Proof: We know by Sobolev’s embedding theorem that for m > 1+
n

2
we have Hm(Ω) ⊂

C1(Ω) continuously. The trace operator γ0 is a bijection between Hm(Ω) and Hm− 1
2 (Γ).

Therefore, if νk ∈ Hm− 1
2 (Γ) there exists hk ∈ Hm(Ω) ⊂ C1(Ω) such that γ0hk = νk . �

Lemma 3.2 If ϕ ∈ H1
0 (Ω) ∩H2(Ω), then

∂ϕ

∂xi

= νi
∂ϕ

∂ν
on Γ (3.2)

|∇ϕ|2 =
(
∂ϕ

∂ν

)2

. (3.3)

Proof: Let us prove (3.2), that is, we prove that:

∫

Γ

∂ϕ

∂xi

θdΓ =

∫

Γ

νi
∂ϕ

∂ν
θdΓ for all θ ∈ D(Γ).
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we have Hm(Ω) ⊂

C1(Ω) continuously. The trace operator γ0 is a bijection between Hm(Ω) and Hm− 1
2 (Γ).

Therefore, if νk ∈ Hm− 1
2 (Γ) there exists hk ∈ Hm(Ω) ⊂ C1(Ω) such that γ0hk = νk . �

Lemma 3.2 If ϕ ∈ H1
0 (Ω) ∩H2(Ω), then

∂ϕ

∂xi

= νi
∂ϕ

∂ν
on Γ (3.2)

|∇ϕ|2 =
(
∂ϕ

∂ν

)2

. (3.3)

Proof: Let us prove (3.2), that is, we prove that:

∫

Γ

∂ϕ

∂xi

θdΓ =

∫

Γ

νi
∂ϕ

∂ν
θdΓ for all θ ∈ D(Γ).
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In fact, let be ξ ∈ C2(Ω) such that γ0ξ = θ. Such ξ exists by the embedding Hm(Ω) ⊂
C2(Ω) form > 2+

2

n
and the trace theorem. Let be (hk)1≤k≤n the vector field of Lemma 3.1.

From Gauss’formula, we obtain:∫

Ω

∂

∂xj

∂

∂xi

(ϕhjξ) dx =

∫

Γ

νi
∂

∂xj

(ϕhjξ) dΓ. (3.4)

The integral on the right hand side of (3.4) is∫

Γ

νi
∂ϕ

∂xj

hjξ dΓ

because ϕ ∈ H1
0 (Ω) ∩H2(Ω). Whence,∫

Ω

∂

∂xi

∂

∂xj

(ϕhjξ) dx =

∫

Γ

νi
∂ϕ

∂xj

hjξ dΓ =

∫

Γ

νi
∂ϕ

∂xj

νjθ dΓ,

because hj = νj and ξ = θ on Γ, by definition. Adding the above equality from j = 1 up

to j = n, we obtain:
n∑

i=1

∫

Ω

∂

∂xi

∂

∂xj

(ϕhjξ) dx =
n∑

i=1

∫

Γ

νi
∂ϕ

∂ν
vjθ dΓ.

By application of Gauss lemma to the left hand side, we obtain:∫

Ω

∂

∂xi

∂

∂xj

(ϕhjξ) dx =

∫

Γ

∂ϕ

∂xi

θν2
j dΓ.

Adding from j = 1 to j = n, we obtain:∫

Γ

∂ϕ

∂xi

θ dΓ =

∫

Γ

νi
∂ϕ

∂ν
θ dΓ

for all θ ∈ D(Γ). �

To prove (3.3) it is sufficient to consider

νi
∂ϕ

∂xi

νi
∂ϕ

∂xi

=
∂ϕ

∂xi

∂ϕ

∂xi

= |∇ϕ|2.

�

Note that repeated index means summation.

Lemma 3.3 Let (qk)1≤k≤n be a vector field such that qk ∈ C1(Ω) for 1 ≤ k ≤ n. If

(ϕn)n∈N is a sequence of strong solutions of (*), cf. Chapter 1, then, for each n ∈ N it is

true the identity:

1

2

∫

Σ

hkνk

(
∂ϕn

∂ν

)2

dΓ dt =

(
ϕ′
n(t), qk

∂ϕn(t)

∂xk

) ����
T

0

+

+
1

2

∫

Q

∂qk
∂xk

[
|ϕ′

n(t)|2 − |∇ϕn(t)|2
]
dxdt+

+

∫

Q

∂qk
∂xj

∂ϕn

∂xk

∂ϕn

∂xj

dxdt−
∫

Q

fnqk
∂ϕn

∂xk

dxdt

(3.5)

where qk ∈ C1(Ω), for 1 ≤ k ≤ n.
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Proof: We use the notation

X =

(
ϕ′
n(t), qk

∂ϕn(t)

∂xk

) ����
T

0

=

(
ϕ′
n(T ), qk

∂ϕn(T )

∂xk

)
−
(
ϕ′
n(0), qk

∂ϕn(0)

∂xk

)
·

Note that qk
∂ϕn

∂xk

∈ L2(Q) because ϕn is strong solution, see Chapter 1.

Then it makes sense multiply both sides of ϕ′′
n − ∆ϕn = fn , a.e. in Q, by qk

∂ϕn

∂xk

and

integrate on Q. We have:

∫

Q

ϕ′′
nqk

∂ϕn

∂xk

dxdt−
∫

Q

∆ϕnqk
∂ϕn

∂xk

dxdt =

∫

Q

fnqk
∂ϕn

∂xk

dxdt (3.6)

where double index means addition on 1 ≤ k ≤ n.

Analysis of

∫

Q

∆ϕnqk
∂ϕ

∂xk

dxdt.

To make easy the notation we use ϕ instead of ϕn . We obtain:

−
∫

Q

∆ϕqk
∂ϕ

∂xk

dxdt = −
∫ T

0

∫

Ω

∆ϕqk
∂ϕ

∂xk

dxdt. (3.7)

By Gauss’formula we obtain:

−
∫

Ω

∆ϕqk
∂ϕ

∂xk

dx = −
∫

Γ

∂ϕ

∂ν
qk

∂ϕ

∂xk

dΓ +

∫

Ω

∇ϕ · ∇
(
qk

∂ϕ

∂xk

)
dx. (3.8)

We have:

∇ϕ · ∇
(
qk

∂ϕ

∂xk

)
=

∂ϕ

∂xi

qk
∂

∂xk

(
∂ϕ

∂xi

)
+

+
∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

=
1

2
qk

∂

∂xk

(
∂ϕ

∂xi

)2

+

+
∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

=
1

2
qk

∂

∂xk

|∇ϕ|2 + ∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

·

(3.9)

By (3.9) we modify the last integral in the right hand side of (3.8) obtainning:

−
∫

Ω

∆ϕqk
∂ϕ

∂xk

dx = −
∫

Γ

∂ϕ

∂ν
qk

∂ϕ

∂xk

dΓ+

+
1

2

∫

Ω

qk
∂

∂xk

|∇ϕ|2 dx+

∫

Ω

∂qk
∂xi

∂ϕ

∂xk

∂ϕ

∂xi

dx.

(3.10)

By Gauss lemma, we obtain:

1

2

∫

Ω

qk
∂

∂xk

|∇ϕ|2 dx =
1

2

∫

Γ

qk|∇ϕ|2 νk dΓ− 1

2

∫

Ω

∂qk
∂xk

|∇ϕ|2 dx. (3.11)

38



24 Hidden Regularity for Weak Solutions
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∂

∂xk

(
∂ϕ

∂xi

)
+
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∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

=
1

2
qk

∂

∂xk

(
∂ϕ

∂xi

)2

+

+
∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

=
1

2
qk

∂

∂xk

|∇ϕ|2 + ∂ϕ

∂xi

∂qk
∂xi

∂ϕ

∂xk

·

(3.9)

By (3.9) we modify the last integral in the right hand side of (3.8) obtainning:

−
∫

Ω

∆ϕqk
∂ϕ

∂xk

dx = −
∫

Γ

∂ϕ

∂ν
qk

∂ϕ

∂xk

dΓ+

+
1

2

∫

Ω

qk
∂

∂xk

|∇ϕ|2 dx+

∫

Ω

∂qk
∂xi

∂ϕ

∂xk

∂ϕ

∂xi

dx.

(3.10)

By Gauss lemma, we obtain:

1

2

∫

Ω

qk
∂

∂xk

|∇ϕ|2 dx =
1

2

∫

Γ

qk|∇ϕ|2 νk dΓ− 1

2

∫

Ω

∂qk
∂xk

|∇ϕ|2 dx. (3.11)
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Note by Lemma 3.2, |∇ϕ|2 =
(
∂ϕ

∂ν

)2

and
∂ϕ

∂xk

= νk
∂ϕ

∂ν
· Consequently, substituting (3.11)

in (3.10) and integrating on ]0, T [ , we obtain:

−
∫

Q

∆ϕqk
∂ϕ

∂xk

dx = −1

2

∫

Σ

qkνk

(
∂ϕ

∂ν

)2

dΓdt−

−1

2

∫

Q

∂qk
∂xk

∇ϕ|2 dxdt+
∫

Q

∂qk
∂xi

∂ϕ

∂xk

∂ϕ

∂xi

dxdt.

(3.12)

Analysis of

∫

Q

ϕ′′qk
∂ϕ

∂xk

dxdt.

We have: ∫

Q

ϕ′′qk
∂ϕ

∂xk

dxdt =

∫ T

0

∫

Ω

ϕ′′qk
∂ϕ

∂xk

dxdt.

We have:
∫ T

0

∂

∂t

(
ϕ′ · qk

∂ϕ

∂xk

)
dt =

∫

Q

ϕ′′qk
∂ϕ

∂xk

dxdt+

∫

Q

ϕ′qk
∂ϕ′

∂wk

dxdt.

Whence,

∫

Q

ϕ′′qk
∂ϕ

∂xk

dxdt =

(
ϕ′(t) · qk

∂ϕ(t)

∂xk

) ����
T

0

− 1

2

∫

Q

qk
∂

∂xk

ϕ′2 dxdt. (3.13)

Note that ϕ′ ∈ C0([0, T ];H1
0 (Ω)), by regularity of strong solutions, cf. Chapter 1. Then,

∫

Ω

∂

∂xk

(qk
2
ϕ′2

)
dx =

∫

Γ

qk
2
ϕ′2νk dΓ = 0.

It follows from the above equality that:

−1

2

∫

Q

qk
∂

∂xk

ϕ′2 dxdt =
1

2

∫

Q

∂qk
∂xk

ϕ′2 dxdt. (3.14)

From (3.14) we obtain from (3.13):

∫

Q

ϕ′′qk
∂ϕ

∂xk

dxdt =

(
ϕ′(t), qk

∂ϕ(t)

∂xk

) ����
T

0

+
1

2

∫

Q

∂qk
∂xk

ϕ′2 dxdt. (3.15)

Substituting (3.12) and (3.15) in (3.6) we obtain (3.5), after substituting ϕn instead of ϕ.

�

We define the energy associated to ϕn by

En(t) =
1

2

∫

Ω

(
ϕ′2
n (t) + |∇ϕn(t)|2

)
dx.
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If t = 0, we have:

En(0) =
1

2

∫

Ω

(
|ϕ1

n|2 + |∇ϕ0
n|2

)
dx.

From the energy inequality (3.17), Chapter 1, we have:

En(t) ≤ C

(
En(0) +

∫ T

0

|f(s)| ds
)
. (3.16)

Evidently a similar inequality is true for weak solutions.

As a consequence of the identity (3.5) of Lemma 3.3, we obtain a key estimate for
∂ϕn

∂ν
on Σ. In fact, take qk = hk the vector field of Lemma 3.1. Then, from (3.5) we obtain:

1

2

∫

Σ

(
∂ϕn

∂ν

)2

dΓdt =
1

2

∫

Q

∂hk

∂xk

(
|ϕ′

n|2 − |∇ϕn|2
)
dxdt+

+X +

∫

Q

∂hk

∂xi

∂ϕn

∂xk

∂ϕn

∂xi

dxdt−
∫

Q

fnhk
∂ϕn

∂xk

dxdt.
(3.17)

Since hk ∈ C1(Ω) and fn ∈ C0([0, T ];C1(Ω)), look Chapter 2, we have:

1

2

����
∫

Q

∂hk

∂xk

(
|ϕ′

n|2 − |∇ϕn|2
)
dxdt

���� ≤ C En(t),

����
∫

Q

fnhk
∂ϕn

∂xk

dxdt

���� ≤ C

n∑
k=1

∫

Ω

(
∂ϕn

∂xk

)2

dx ≤ C En(t),

where C represents different constants
����
∫

Q

∂hk

∂xi

∂ϕn

∂xk

∂ϕn

∂xi

dxdt

���� ≤ C

∫

Ω

|∇ϕn|2 dxdt ≤ C En(t).

By Schwarz and inequality 2ab ≤ a2 + b2 we obtain:

|X| ≤ 2 sup
0≤t≤T

����
(
ϕ′
n(t), hk

∂ϕn(t)

∂xk

)���� ≤ C sup
0≤t≤T

En(t).

Then, by (3.16) the inequality (3.17) becomes:

1

2

∫

Σ

(
∂ϕn

∂ν

)2

dΓdt ≤ C1

(
E(0) +

∫ T

0

|fn(s)| ds
)

(3.18)

where

E0 = E(0) =
1

2

∫

Ω

(
|ϕ1|2 + |∇ϕ0|2

)
dx. (3.19)

From (3.18) it follows that the sequence

(
∂ϕn

∂ν

)

n∈N
is bounded in L2(Σ). Then there

exists a subsequence, still represented with the same index, such that:

∂ϕn

∂ν
converges toχ weakly on L2(Σ) (3.20)
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����
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����
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����
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∂ϕn
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∂ϕn
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∫

Ω

|∇ϕn|2 dxdt ≤ C En(t).

By Schwarz and inequality 2ab ≤ a2 + b2 we obtain:

|X| ≤ 2 sup
0≤t≤T

����
(
ϕ′
n(t), hk

∂ϕn(t)

∂xk

)���� ≤ C sup
0≤t≤T

En(t).

Then, by (3.16) the inequality (3.17) becomes:

1

2

∫

Σ

(
∂ϕn

∂ν

)2

dΓdt ≤ C1

(
E(0) +

∫ T

0

|fn(s)| ds
)

(3.18)

where

E0 = E(0) =
1

2

∫

Ω

(
|ϕ1|2 + |∇ϕ0|2

)
dx. (3.19)

From (3.18) it follows that the sequence

(
∂ϕn

∂ν

)
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is bounded in L2(Σ). Then there

exists a subsequence, still represented with the same index, such that:

∂ϕn

∂ν
converges toχ weakly on L2(Σ) (3.20)
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and

|χ|L2(Σ) ≤ lim
n→∞

����
∂ϕn

∂ν

����
L2(Σ)

·

We choose (ϕn)n∈N as the sequence of strong solutions which approximate the weak solution

ϕ as done in Chapter 2. Then we can formulate the hidden regularity by the following.

Theorem 3.1 (Hidden Regularity) If ϕ is the weak solution of (*), Chapter 1, then

we have:
∂ϕ

∂ν
∈ L2(Σ) (3.21)

∫

Σ

(
∂ϕ

∂ν

)2

dΓdt ≤ C

(
E0 +

∫ T

0

|f(s)| ds
)
. (3.22)

Proof: To prove this theorem, it is sufficient to show that the limit χ obtained in (3.20)

is equal to
∂ϕ

∂ν
· Then (3.18) implies (3.21).

In fact, let us prove that χ =
∂ϕ

∂ν
· We know the weak solution ϕ is the weak limit of

the approximated strong solution (ϕn)n∈N , cf. Chapter 2.

Note that γ1 is the trace of the normal derivative. We need to prove that γ1ϕn ⇀ γ1ϕ

in a topology that implies the convergence in L2(Σ).

We begin observing that:

−∆ϕn = fn = ϕ′′
n in D′(0, T ;H−1(Ω)). (3.23)

We have fn ∈ C0([0, T ];C1(Ω)) and ϕ′
n ∈ L2(0, T ;H1

0 (Ω)). Then, exists zn , wn in

L2(0, T ;H1
0 (Ω) ∩H2(Ω)) such that:

������
−∆wn = fn and ||wn||L2(0,T ;H1

0 (Ω)∩H2(Ω)) ≤ C|fn|L2(Q),

−∆zn = ϕ′
n and ||zn||L2(0,T ;H1

0 (Ω)∩H2(Ω)) ≤ C|ϕ′
n|L2(Q)

(3.24)

by results of elliptic equation. By (3.24) we change (3.23) obtaining:

−∆ϕn = −∆wn − (∆zn)
′ in D′(0, T ;H−1(Ω)). (3.25)

We will prove that (3.25) implies:

ϕn = −wn − z′n in D′(0, T ;H−1(Ω)).

In fact, by (3.25), for each θ ∈ D(0, T ) we have:

−
∫ T

0

∆ϕmθ dx = −
∫ T

0

∆wnθ dx+

∫ T

0

∆znθ
′ dt in H−1(Ω).
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We know that ∆ ∈ L(H1
0 (Ω), H

−1(Ω)), we obtain:

−∆

(∫ T

0

ϕnθ dt

)
= ∆

[
−
∫ T

0

wnθ dt+

∫ T

0

znθ
′ dt

]
.

By the uniqueness of Dirichlet problem we obtain:
∫ T

0

ϕnθ dt = −
∫ T

0

wnθ dt+

∫ T

0

znθ
′ dt in H−1(Ω),

for all θ ∈ D(0, T ), that is,

ϕn = −wn − z′n in D′(0, T ;H−1(Ω)). (3.26)

But, since zn ∈ L2(0, T ;H2(Ω)) it implies that z′n ∈ H−1(0, T ;H2(Ω)) and γ1z
′
n ∈

H−1(0, T ;H1/2(Γ)).

γ1ϕn = −γ1wn − γ1z
′
n in H−1(0, T ;H1/2(Γ)). (3.27)

By (3.24)1 , since fn → f in L1(0, T ;H1(Ω)) or fn is bounded in L2(Q), it implies

||wn||L2(0,T ;H2(Ω)) is bounded. Consequently, there exists a sequence (wn)n∈N , such that

wn ⇀ ψ weak in L2(0, T ;H2(Ω)).

Note that ∆wn = −fn . But fn → f in L1(0, T ;H1
0 (Ω)) and if w is such that ∆w = −f ,

we obtain ψ = w. From the continuity of the trace γ1 we obtain:

γ1wn ⇀ γ1w weak in L2(0, T ;H1/2(Γ)). (3.28)

By (3.24)2 , since ϕ′
n is bounded in L2(Q), we obtain, by similar argument, a subsequence

(zn)n∈N such that

γ1zn ⇀ γ1z in L2(0, T ;H1/2(Γ)). (3.29)

We prove that

γ1z
′
n ⇀ γ1z

′ weak in H−1(0, T ;H1/2(Γ)). (3.30)

Note that by (3.24) w and z are solutions of ∆w = −f and ∆z = −ϕ′ with ϕ′ weak limit

of ϕ′
n where ϕ is the weak solution. By −∆ϕ = f − ϕ′′ in D′(0, T ;H−1(Ω)), we obtain

ϕ = −w− z′ and γ1ϕ = −γ1w− γ1z
′ in H−1(0, T ;H1/2(Γ)). We have by (3.28) and (3.29)

γ1ϕn = −γ1wn − γ1z
′
n → −γ1w − γ1z

′ = γ1ϕ in H−1(0, T ;H1/2(Γ))

or

⟨γ1ϕn, v⟩ → ⟨γ1ϕ, v⟩ for all v ∈ H1
0 (0, T ;H

1/2(Γ)).

We obtained by (3.20):

⟨γ1ϕn, v⟩ → ⟨χ, v⟩ for all v ∈ L2(0, T ;L2(Γ)).

Since H1
0 (0, T ;H

1/2(Γ)) ⊂ L2(0, T ;L2(Γ)) we have χ = γ1ϕ. �
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Note that by (3.24) w and z are solutions of ∆w = −f and ∆z = −ϕ′ with ϕ′ weak limit

of ϕ′
n where ϕ is the weak solution. By −∆ϕ = f − ϕ′′ in D′(0, T ;H−1(Ω)), we obtain

ϕ = −w− z′ and γ1ϕ = −γ1w− γ1z
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γ1ϕn = −γ1wn − γ1z
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n → −γ1w − γ1z

′ = γ1ϕ in H−1(0, T ;H1/2(Γ))

or
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1/2(Γ)).

We obtained by (3.20):

⟨γ1ϕn, v⟩ → ⟨χ, v⟩ for all v ∈ L2(0, T ;L2(Γ)).
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0 (0, T ;H

1/2(Γ)) ⊂ L2(0, T ;L2(Γ)) we have χ = γ1ϕ. �

Chapter 4

Ultra Weak Solutions

4.1 Ultra Weak Solutions

In this section we are interested in the study of the non homogeneous boundary value

problem: ��������

z′′ −∆z = 0 in Q,

z = v on Σ,

z(0) = z0, z′(0) = z1 in Ω

(4.1)

when z0, z1 are not regular as in Chapter 1 and 2. This type of problem was analysed, first

time, in Lions-Magenes [43], cf. also Lions [39]. One of the questions is an appropriate

definition of what we understand by solution of (4.1). As the initial values z0, z1 are

not regular, we define the solution of (4.1) by the so called Transposition Method, as

proposed in Lions-Magenes op. cit. Here we follows an heuristic method in order to find a

natural definition of what we will call ultra weak solution as defined by Lions-Magenes.

In fact, multiply both sides of the equation (4.1)1 by a function θ = θ(x, t), x ∈ Ω, t ∈]0, T [
and integrate in Q, formally, by parts in t.

∫ T

0

∫

Ω

z(θ′′ −∆θ) dxdt+

∫

Ω

z′(x, T )θ(x, T ) dx−

−
∫

Ω

z′(x, 0)θ′(x, 0) dx−
∫

Ω

z(x, T )θ′(x, T ) dx+

∫

Ω

z(x, 0)θ′(x, 0) dx−

−
∫ T

0

∫

Γ

∂z

∂ν
θ dΓdt+

∫ T

0

∫

Γ

∂θ

∂ν
z dΓdt = 0.

(4.2)

We have no information, up to know, about z(x, T ), z′(x, T ) and
∂z

∂ν
· Then, we choose

θ = θ(x, t) such that

θ(x, T ) = 0, θ′(x, T ) = 0 and θ(x, t) = 0 on Σ. (4.3)

29
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30 Ultra Weak Solutions

Whence for this choice of θ = θ(x, t), the equality (4.2) turns out:

⟨z, θ′′ −∆θ⟩ = −⟨z0, θ′(0)⟩+ ⟨z1, θ(0)⟩ −
⟨
∂θ

∂ν
, v

⟩
(4.4)

where ⟨·, ·⟩ represents different pairs of duality.
The definition of ultra weak solution, by transposition method, will be given as a

functional defined by the expression (4.4). Then we will see that is natural to choose

θ = θ(x, t) as the weak solution of the backward problem:

��������

θ′′ −∆θ = f in Q,

θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 in Ω.

(4.5)

If we take f ∈ L1(0, T ;L2(Ω)) and consider the change of variables T − t instead of t in

(4.5), then (4.5) is a particular case of the problem studied in Chapter 2 for weak solutions.

Then we can apply to θ, weak solution of (4.5), all the conclusions of Chapters 2 and 3.

Then, we have: ������
θ ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),

∂θ

∂ν
∈ L2(Σ).

(4.6)

By Chapter 2, Corollary 2.1, inequality (2.30), since θ0 = θ1 = 0, we obtain:

||θ′||L∞(0,T ;L2(Ω)) + ||θ||L∞(0,T ;H1
0 (Ω)) ≤ C||f ||L1(0,T ;L2(Ω)) . (4.7)

By Chapter 3, Theorem 3.1, we obtain:

��������

∂θ

∂ν
∈ L2(Σ),

����
∂θ

∂ν

����
L2(Σ)

≤ C||f ||L1(0,T ;L2(Ω)).
(4.8)

As a consequence of (4.6) we have θ′ ∈ L2(Ω), θ(0) ∈ H1
0 (Ω) and

∂θ

∂ν
∈ L2(Σ). Then,

in order to ensure that the right hand side of (4.4) makes sense it is sufficient to choose:

z0 ∈ L2(Ω), z1 ∈ H−1(Ω) and v ∈ L2(Σ). (4.9)

Motivated by the expression (4.6) and by the above considerations, for each set {z0, z1, v}
in the class (4.9) is well defined the functional S on L1(0, T ;L2(Ω)) by:

⟨S, f⟩ = −(z0, θ′(0)) + ⟨z1, θ(0)⟩ −
∫

Σ

∂θ

∂ν
v dΓdt (4.10)

for all solution θ of the problem (4.5).
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Then, we have: ������
θ ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),

∂θ

∂ν
∈ L2(Σ).

(4.6)

By Chapter 2, Corollary 2.1, inequality (2.30), since θ0 = θ1 = 0, we obtain:

||θ′||L∞(0,T ;L2(Ω)) + ||θ||L∞(0,T ;H1
0 (Ω)) ≤ C||f ||L1(0,T ;L2(Ω)) . (4.7)

By Chapter 3, Theorem 3.1, we obtain:

��������

∂θ

∂ν
∈ L2(Σ),

����
∂θ

∂ν

����
L2(Σ)

≤ C||f ||L1(0,T ;L2(Ω)).
(4.8)

As a consequence of (4.6) we have θ′ ∈ L2(Ω), θ(0) ∈ H1
0 (Ω) and

∂θ

∂ν
∈ L2(Σ). Then,

in order to ensure that the right hand side of (4.4) makes sense it is sufficient to choose:

z0 ∈ L2(Ω), z1 ∈ H−1(Ω) and v ∈ L2(Σ). (4.9)

Motivated by the expression (4.6) and by the above considerations, for each set {z0, z1, v}
in the class (4.9) is well defined the functional S on L1(0, T ;L2(Ω)) by:

⟨S, f⟩ = −(z0, θ′(0)) + ⟨z1, θ(0)⟩ −
∫

Σ

∂θ

∂ν
v dΓdt (4.10)

for all solution θ of the problem (4.5).
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From the estimates (4.7) and (4.8)2 , for the weak solution θ of (4.5), we obtain, from

(4.10):

|⟨S, f⟩| ≤ |z0| |θ′(0)|+ ||z1||H−1(Ω) ||θ(0)||+
�� ∂θ
∂ν

��
L2(Σ)

||v||L2(Σ) ≤

≤ C
(
|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)

)
||f ||L1(0,T ;L2(Ω)) .

(4.11)

Therefore, S : L1(0, T ;L2(Ω)) → R, defined by (4.10), is a linear form which is contin-

uous by (4.11). It follows that S is an object of L∞(0, T ;L2(Ω)), the topological dual of

L1(0, T ;L2(Ω)). Furthermore,

||S||L∞(0,T ;L2(Ω)) ≤ C
(
|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)

)
. (4.12)

Definition 4.1 For {z0, z1, v} ∈ L2(Ω)×H−1(Ω)× L2(Σ), we call ultra weak solution of

the non homogeneous mixed problem (4.1), a function z ∈ L∞(0, T ;L2(Ω)) satisfying the

condition: ∫

Q

zf dxdt = −(z0, θ(0)) + ⟨z1, θ(0)⟩ −
∫

Σ

∂θ

∂ν
v dΓdt, (4.13)

for all f ∈ L1(0, T ;L2(Ω)), with θ solution of the backward problem (4.5).

We say that the ultra weak solution z of (4.1) is defined by transposition. For this

reason, we sometimes call it solution by transposition instead of ultra weak solution.

Theorem 4.1 (Existence and Uniqueness) Exists only one ultra weak solution z of

the non homogeneous mixed problem (4.1). Furthermore, z satisfies:

||z||L∞(0,T ;L2(Ω)) ≤ C
(
|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)

)
. (4.14)

Note that the constant C in (4.14) depends only of T > 0 and the vector field (hk)k∈N

introduced in Chapter 3.

Proof: The existence is a consequence of (4.10), (4.11) and Riesz representation theorem

for the objects of L∞(0, T ;L2(Ω)) dual of L1(0, T ;L2(Ω)). The uniqueness is a consequence

of Du Bois Raymond’s Lemma (cf. Medeiros-Miranda [48]). �

Corollary 4.1 The linear function {z0, z1, v} → z, from L2(Ω) × H−1(Ω) × L2(Σ) into

L∞(0, T ;L2(Ω)) is continuous, where z is the ultra weak solution of (4.1) with data z0, z1,

v.
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In the applications it is important to know the regularity of the ultra weak solutions

as we have seen in the strong and weak cases.

Theorem 4.2 (Regularity of Ultra Weak Solutions) The ultra weak solution z of

(4.1) belongs to the class:

z ∈ C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) (4.15)

and satisfies the estimate:

||z||L∞(0,T ;L2(Ω)) + ||z′||L∞(0,T ;H−1(Ω)) ≤ C(|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)), (4.16)

where C > 0 is a constant which depends only of T and the vector field (hk)k∈N .

Proof: We divide the proof in two parts. In the first we prove regularity for z and then

for z′.

Step 1. Let us recall, first of all, some results of regularity for strong solutions. As we

have proved in Chapter 1, Corollary 1.1, from inequality (1.25), if ϕ is an strong solutions

of (*) of Chapter 1, then

ϕ ∈ C0([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];H1

0 (Ω)) (4.17)

and

||ϕ||L∞(0,T ;H1
0 (Ω)∩H2(Ω)) + ||ϕ′||L∞(0,T ;H1

0 (Ω)) ≤

≤ 2(||ϕ1||+ ||ϕ0||H1
0 (Ω)∩H2(Ω) + ||f ||L1(0,T ;H1

0 (Ω))).
(4.18)

Note that H1
0 (Ω) ∩H2(Ω) is equipped with the norm of the Laplace operator.

Let us consider the system (4.1) in the regular case, that is when:

z0 ∈ H1
0 (Ω), z1 ∈ L2(Ω) and v ∈ H2

0 (0, T ;H
3/2(Γ)). (4.19)

Lemma 4.1 Exists only one weak solution z of the non homogeneous mixed problem (4.1)

when we choose the initial data (4.19) and z has the regularity:

z ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ;L2(Ω)). (4.20)

Furthermore, this weak solution z is an ultra weak solution.
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Furthermore, this weak solution z is an ultra weak solution.
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Proof: In fact, let v̂ ∈ H2
0 (0, T ;H

2(Ω)) such that v̂ = 0 on Σ. Note that v̂′′ and ∆v̂ are

objects of L2(0, T ;L2(Ω)). Let us consider the mixed problem:

∣∣∣∣∣∣∣∣

u′′ −∆u = −v̂′′ +∆v̂ in Q,

u = 0 on Σ,

u(0) = z0 and u′(0) = z1 in Ω.

(4.21)

Since −v̂′′ +∆v̂ is in L2(0, T ;L2(Ω)), z0 ∈ H1
0 (Ω) and z′ ∈ L2(Ω), it follows, by regularity

of weak solutions, cf. Chapter 2, Theorem 3.1, that the solution u of (4.21) has the

regularity:

u ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

By definition of weak solution, u satisfies:

d

dt
(u′(t), ψ) + ((u(t), ψ)) = (−v̂′′ +∆v̂, ψ)

for all ψ ∈ H1
0 (Ω) in the sense of D′(0, T ). Then

d

dt
(u′(t) + v̂′(t), ψ) + ((u(t) + v̂(t), ψ)) = 0

for all ψ ∈ H1
0 (Ω) in the sense of D′(0, T ).

We have u+ v̂ = v on Σ and (u+ v̂)(0) = z0 and (u+ v̂)′(0) = z1. Therefore, z = u+ v̂ is

an weak solution of the problem (4.1) with initial data (4.19). Consequently by regularity

of weak solution we have z ∈ C0([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) and we have uniqueness

too.

To complete the proof we need to prove that z is also ultra weak solution of (4.1). In

fact, let be f ∈ L1(0, T ;L2(Ω)) and consider the sequence (fµ)µ∈N , with fµ ∈ L1(0, T ;H1
0 (Ω))

such that

lim
µ→∞

fµ = f in L1(0, T ;L2(Ω)). (4.22)

Let us consider the two backwards problems:

∣∣∣∣∣∣∣∣

θ′′µ −∆θµ = fµ in Q,

θµ = 0 on Σ,

θµ(T ) = 0, θ′µ(T ) = 0 on Ω

(4.23)

and ∣∣∣∣∣∣∣∣

θ′′ −∆θ = f in Q,

θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 in Ω.

(4.24)
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34 Ultra Weak Solutions

By the regularity of fµ and f , it follows that exists strong solution θµ of (4.23) and

weak solution θ of (4.24) and:

θµ ∈ C0([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];H1

0 (Ω)). (4.25)

It follows that θµ − θ is weak solution of a backward homogeneous problem of the type

(4.24). Then changing t in T − t, we have, by energy inequality Chapter 2, Theorem 2.2,

(2.29) and Chapter 3, Theorem 3.1, hidden regularity (4.21):

|θ′µ(T − t)− θ′(T − t)|2 + ||θ′µ(T − t)− θ(T − t)||2 +
����
∂θµ
∂ν

− ∂θ

∂ν

����
2

L2(Σ)

≤

≤ C||fµ − f ||L1(0,T ;L2(Ω)) ,

for all 0 ≤ t ≤ T . Taking t = T and let be µ → ∞, we obtain, from the last inequality:

���������

θµ(0) → θ(0) in H1
0 (Ω),

θ′µ(0) → θ′(0) in L2(Ω),

∂θµ
∂ν

→ ∂θ

∂ν
in L2(Σ).

(4.26)

But z satisfies the regularity condition (4.15), then ∆z ∈ C0([0, T ];H−1(Ω)). But z is weak

solution of (4.1) with initial data (4.19), then z′′ − ∆z ∈ C0([0, T ];H−1(Ω)). It follows

that makes sense ⟨z′′−∆z, θµ⟩ or ⟨z′′, θµ⟩, ⟨−∆z, θµ⟩, duality between H−1(Ω) and H1
0 (Ω).

Then, by the regularity (4.25) we can use the integration by parts and the argument used

to obtain equality (4.2), but now not formally. Then we have:

∫

Q

zfµ dxdt = −(z0, θ′µ(0)) + ⟨z1, θµ(0)⟩ −
∫

Σ

∂θµ
∂ν

v dΓdt. (4.27)

Taking the limit in (4.27) when µ → ∞, observing the convergences (4.26), it follows that

z is an ultra weak solution of the non homogeneous problem (4.1) with regular initial data

given by (4.19). �

Let us prove now that the ultra weak solution of the non homogeneous mixed problem

(4.1) is in C0([0, T ];L2(Ω)). In fact, given z0 ∈ L2(Ω), z1 ∈ H−1(Ω) and v ∈ L2(Σ), exists

sequences (z0µ)µ∈N , (z
1
µ)µ∈N and (vµ)µ∈N with z0µ, z

1
µ and vµ , respectively, in H1

0 (Ω), L
2(Ω)

and H2
0 (0, T ;H

3/2(Γ)) such that:

��������

z0µ converges to z0 in L2(Ω),

z1µ converges to z1 in H−1(Ω),

vµ converges to v in L2(Σ).

(4.28)
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z is an ultra weak solution of the non homogeneous problem (4.1) with regular initial data

given by (4.19). �

Let us prove now that the ultra weak solution of the non homogeneous mixed problem

(4.1) is in C0([0, T ];L2(Ω)). In fact, given z0 ∈ L2(Ω), z1 ∈ H−1(Ω) and v ∈ L2(Σ), exists

sequences (z0µ)µ∈N , (z
1
µ)µ∈N and (vµ)µ∈N with z0µ, z

1
µ and vµ , respectively, in H1

0 (Ω), L
2(Ω)

and H2
0 (0, T ;H

3/2(Γ)) such that:

��������

z0µ converges to z0 in L2(Ω),

z1µ converges to z1 in H−1(Ω),
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Let �vµ ∈ H1
0 (0, T ;H

2(Ω)) such that �vµ = vµ on Σ. Consider the non homogeneous

mixed problem: ��������

z′′µ −∆zµ = 0 in Q,

zµ = vµ on Σ,

zµ(0) = z0µ , z′µ(0) = z1µ.

(4.29)

By Lemma 4.1 it follows that the solution zµ of (4.29) is in the class:

zµ ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (4.30)

and zµ is an ultra weak solution of the problem (4.29). Therefore, if z is ultra weak solution

of (4.1), it follows that zµ− z is also ultra weak solution of (4.1) with data z0µ− z0, z1µ− z1

and vµ − v. By the estimate (4.14) of Theorem 4.1, we obtain:

||zµ − z||L∞(0,T ;L2(Ω)) ≤ C
(
|z0µ − z0|+ ||z1µ − z1||H−1(Ω) + ||vµ − v||L2(Σ)

)
.

When µ → ∞ in the last inequality, we obtain by (4.28),

lim
µ→∞

zµ = z in L∞(0, T ;L2(Ω)).

By zµ ∈ C0([0, T ];L2(Ω)), then z ∈ C0([0, T ];L2(Ω)). �

Step 2., We prove now that z′ ∈ C0([0, T ];H−1(Ω)). In the proof we use Chapter 3,

Lemma 3.3 identity (3.5). We prove first Lemma 4.2 and announce Lemma 4.3 which will

be proved latter. Note, however, the notation:

W 1,1
0 (0, T ;L2(Ω)) =

{
v; v,

dv

dt
∈ L2(0, T ;L2(Ω)) and v(0) = v(T ) = 0

}
,

which is a Banach space with the norm:

||v||W 1,1
0 (0,T ;L2(Ω)) =

����
dv

dt

����
L1(0,T ;L2(Ω))

· (4.31)

The dual of this Banach space will be represented by W−1,∞(0, T ;L2(Ω)). For all f ∈
W 1,1

0 (0, T ;L2(Ω)), we have:

⟨z′, f⟩ = −
∫ T

0

(z, f ′) dt. (4.32)

Then, by Schwarz inequality and (4.31), we obtain from (4.32):

||z′||W−1,∞(0,T ;L2(Ω)) ≤ ||z||L∞(0,T ;L2(Ω)) , (4.33)

for all weak solution of z of (4.1). �
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36 Ultra Weak Solutions

Lemma 4.2 For a weak solution z of (4.1) we have:

z′ ∈ W−1,∞
0 (0, T ;L2(Ω)).

Proof: If z is an weak solution we have z ∈ L∞(0, T ;L2(Ω)), in particular z ∈ L2(0, T ;L2(Ω))

what implies z′ ∈ H−1(0, T ;L2(Ω)). Let f in W 1,1(0, T ;L2(Ω)) and consider a sequence

(fµ)µ∈N of functions fµ ∈ H1
0 (0, T ;L

2(Ω)) such that:

fµ → f in W 1,1
0 (0, T ;L2(Ω)). (4.34)

We have by (4.32) and (4.33) for fµ instead of f and taking limit when µ → ∞, that

z′ ∈ W−1,∞(0, T ;L2(Ω)). �

Let us consider f ∈ H1
0 (0, T ;L

2(Ω)). From (4.32) and the definition of weak solutions

it follows

⟨z′, f⟩ = −
∫

Q

z f ′ dxdt = (z0, θ′(0))− ⟨z1, θ(0)⟩+
∫

Σ

∂θ

∂ν
v dΓdt (4.35)

for all θ solution of the backward problem:

��������

θ′′ −∆θ = f ′ in Q,

θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 on Ω.

(4.36)

We assume the following lemma which proof will be done later.

Lemma 4.3 The solution θ of (4.36) satisfies the inequality:

|θ′(0)|+ ||θ(0)||+
����
∂θ

∂ν

����
L2(Σ)

≤ C||f ||L1(0,T ;H1
0 (Ω)) (4.37)

for all f ∈ W 1,1
0 (0, T ;H1

0 (Ω)).

Note that the constant C that appears in (4.37) depends only of T and the vector field

(hk)1≤k≤n .

From (4.35) and Lemma 4.2, we obtain:

|⟨z′, f⟩| ≤ C(|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)||f ||L1(0,T ;H1
0 (Ω)) . (4.38)

Since W 1,1
0 (0, T ;H1

0 (Ω)) is dense in L1(0, T ;H1
0 (Ω)), it follows that the inequality (4.38) is

true for all f ∈ L1(0, T ;H1
0 (Ω)), consequently

z′ ∈ L∞(0, T ;H−1(Ω)) (4.39)
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||z′||L∞(0,T ;H−1(Ω)) ≤ C
(
|z0|+ ||z1||H−1(Ω) + ||v||L2(Σ)

)
. (4.40)

Note that (4.39) and (4.40) are verified for all ultra weak solution of the problem (4.1).

Now, let us consider a sequence of weak solutions of (4.1), approximating z as in (4.28).

Then zµ − z is also an ultra weak solution of (4.1) and by (4.40) we obtain:

||z′µ − z′||L∞(0,T ;H−1(Ω)) ≤ C
(
|z0µ − z0|+ ||z1µ − z1||H−1(Ω) + ||vµ − v||L2(Σ)

)
.

Whence

lim
µ→∞

z′µ = z′ in L∞(0, T ;H−1(Ω)). (4.41)

Note that zµ is also weak solution, then z′µ ∈ C0([0, T ];H−1(Ω)) and by (4.41) we have

z′ ∈ C0([0, T ];H−1(Ω)). �

Proof: Let us consider the problem
��������

w′′ −∆w = f in Q,

w = 0 on Σ,

w(T ) = 0, w′(T ) = 0 in Ω

(4.42)

for f ∈ W 1,1
0 (0, T ;H1

0 (Ω)). It follows, from the regularity of strong solutions, Chapter 1,

Theorem 3.1, that:

w ∈ C0([0, T ];H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ];H1

0 (Ω)) (4.43)

||w′||L∞(0,T ;H1
0 (Ω)) + ||w||L∞(0,T ;H1

0 (Ω)∩H2(Ω)) ≤ C||f ||L1(0,T ;H1
0 (Ω)) . (4.44)

Let w′ = θ. Then θ is solution of (4.36) because θ verifies the equation (4.36)1 θ(T ) =

w′(T ) = 0 and θ′(T ) = w′′(T ) = ∆w(T ) = 0, because f ∈ W 1,1
0 (0, T ;H1

0 (Ω)).

Whence,

|θ′(0)|+ ||θ(0)|| = |w′′(0)|+ ||w′(0)|| = |∆w(0)|+ ||w′(0)||.

It follows from (4.44) that:

|θ′(0)|+ ||θ(0)|| ≤ C||f ||L1(0,T ;H1
0 (Ω)) . (4.45)

Note that with (4.45), in order to obtain the inequality of Lemma 4.2, it is sufficient

to estimate

����
∂θ

∂ν

����
L2(Σ)

by ||f ||L1(0,T ;H1
0 (Ω)) . For this, we use the identity (3.5) of Lemma

3.3, Chapter 3. In fact, we rewrite it for θ solution of (4.36). We have with qk = hk :

1

2

∫

Σ

(
∂θ

∂ν

)2

dΓdt = −
(
θ(0), hk

∂θ(0)

∂xk

)
+

+
1

2

∫

Q

∂hk

∂xk

(|θ′|2 − ||θ||2) dxdt+
∫

Q

∂hk

∂xj

∂θ

∂xk

∂θ

∂xj

dxdt−

−
∫

Q

f ′ hk
∂θ

∂xk

dxdt.

(4.46)
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Since hk
∂θ

∂xk

∈ L∞(0, T ;L2(Ω)) it follows that hk
∂θ′

∂xk

∈ W−1,∞(0, T ;L2(Ω)), then

−
∫

Q

f ′ hk
∂θ

∂xk

dxdt =

∫

Q

f hk
∂θ′

∂xk

dxdt. (4.47)

Also, as f is zero in T and θ′ = w′′ = ∆w + f , we obtain:∫

Q

f hk
∂θ′

∂xk

dxdt = −
∫

Q

∂

∂xk

(f hk)θ
′ dxdt =

= −
∫

Q

∂f

∂xk

hk∆w dxdt−
∫

Q

∂f

∂xk

hk f dxdt−

−
∫

Q

∂hk

∂xk

f∆w dxdt−
∫

Q

∂hk

∂xk

f 2 dxdt.

(4.48)

By the same argument, we have:

−
∫

Q

(
∂f

∂xk

)
hk f dxdt = −1

2

∫

Q

hk
∂

∂xk

f 2 dxdt =
1

2

∫

Q

∂hk

∂xk

f 2 dxdt. (4.49)

Substituting (4.49) in (4.48) and the result in (4.47), we obtain:

−
∫

Q

f ′hk
∂θ

∂xk

dxdt = −
∫

Q

(
∂f

∂xk

)
hk∆w dxdt−

−
∫

q

(
∂hk

∂xk

)
f∆w dxdt− 1

2

(
∂hk

∂xk

)
f 2 dxdt.

(4.50)

We know that:

1

2

∫

Q

∂hk

∂xk

(|θ′|2 − ||θ||2) dxdt =

=
1

2

∫

Q

∂hk

∂xk

(|∆w|2 + 2f |∆w|+ |f |2 − ||θ||2) dxdt.
(4.51)

Substituting (4.50) and (4.51) in (4.46) we have:

1

2

∫

Σ

(
∂θ

∂ν

)2

dΓdt = −
(
w′(0), hk

∂w′(0)

∂xk

)
+

+
1

2

∫

Q

(
∂hk

∂xk

)
|∆w|2 dxdt− 1

2

∫

Q

(
∂hk

∂xk

)
||w′||2 dxdt−

−
∫

Q

(
∂f

∂xk

)
hk∆w dxdt+

∫

Q

∂hk

∂xj

∂w′

∂xk

∂w′

∂xj

dxdt.

(4.52)

Applying the estimate (4.44) to the right hand side of (4.52), observing that hk ∈
C1(Ω), 1 ≤ k ≤ n, we obtain:

∫

Σ

(
∂θ

∂ν

)2

dΓdt ≤ C||f ||L1(0,T ;H1
0 (Ω)) . (4.53)

From (4.45) and (4.53) follows the proof of Lemma 4.3. �
The following corollary is an immediate consequence of Theorem 4.2.
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Since hk
∂θ

∂xk

∈ L∞(0, T ;L2(Ω)) it follows that hk
∂θ′

∂xk

∈ W−1,∞(0, T ;L2(Ω)), then

−
∫

Q

f ′ hk
∂θ

∂xk

dxdt =

∫

Q

f hk
∂θ′

∂xk

dxdt. (4.47)

Also, as f is zero in T and θ′ = w′′ = ∆w + f , we obtain:∫

Q

f hk
∂θ′

∂xk

dxdt = −
∫

Q

∂

∂xk

(f hk)θ
′ dxdt =

= −
∫

Q

∂f

∂xk

hk∆w dxdt−
∫

Q

∂f

∂xk

hk f dxdt−

−
∫

Q

∂hk

∂xk

f∆w dxdt−
∫

Q

∂hk

∂xk

f 2 dxdt.

(4.48)

By the same argument, we have:

−
∫

Q

(
∂f

∂xk

)
hk f dxdt = −1

2

∫

Q

hk
∂

∂xk

f 2 dxdt =
1

2

∫

Q

∂hk

∂xk

f 2 dxdt. (4.49)

Substituting (4.49) in (4.48) and the result in (4.47), we obtain:

−
∫

Q

f ′hk
∂θ

∂xk

dxdt = −
∫

Q

(
∂f

∂xk

)
hk∆w dxdt−

−
∫

q

(
∂hk

∂xk

)
f∆w dxdt− 1

2

(
∂hk

∂xk

)
f 2 dxdt.

(4.50)

We know that:

1

2

∫

Q

∂hk

∂xk

(|θ′|2 − ||θ||2) dxdt =

=
1

2

∫

Q

∂hk

∂xk

(|∆w|2 + 2f |∆w|+ |f |2 − ||θ||2) dxdt.
(4.51)

Substituting (4.50) and (4.51) in (4.46) we have:

1

2

∫

Σ

(
∂θ

∂ν

)2

dΓdt = −
(
w′(0), hk

∂w′(0)

∂xk

)
+

+
1

2

∫

Q

(
∂hk

∂xk

)
|∆w|2 dxdt− 1

2

∫

Q

(
∂hk

∂xk

)
||w′||2 dxdt−

−
∫

Q

(
∂f

∂xk

)
hk∆w dxdt+

∫

Q

∂hk

∂xj

∂w′

∂xk

∂w′

∂xj

dxdt.

(4.52)

Applying the estimate (4.44) to the right hand side of (4.52), observing that hk ∈
C1(Ω), 1 ≤ k ≤ n, we obtain:

∫

Σ

(
∂θ

∂ν

)2

dΓdt ≤ C||f ||L1(0,T ;H1
0 (Ω)) . (4.53)

From (4.45) and (4.53) follows the proof of Lemma 4.3. �
The following corollary is an immediate consequence of Theorem 4.2.
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Corollary 4.2 The linear mapping {z0, z1, v} → {z, z′} from L2(Ω) × H−1(Ω) × L2(Σ)

into L∞(0, T ;L2(Ω)) × L∞(0, T ;H−1(Ω)), where z is the ultra weak solution of (4.1), is

continuous.
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Chapter 5

Concrete Representation of Ultra

Weak Solutions

5.1 Concrete Representation of Ultra Weak Solutions

The most difficult point in this section is to prove that the ultra weak solution z, Chapter

4, (4.1), has trace on the lateral boundary Σ of the cylinder Q = Ω×]0, T [ . To make it

clear we need an appropriate trace operator what will be done in the following.

Let us consider the Hilbert space

U =
{
u ∈ L2(Ω);∆u ∈ H−1(Ω)

}

with the norm:

||u||2U = |u|2 + ||∆u||2H−1(Ω) .

Following the argument of Lions [32], we prove that D(Ω) is dense in U . Note that by

D(Ω) we represent the restrictions to Ω of the functions φ of C∞(Rn). Then, if u ∈ U it

has a trace on Γ, that is, we can construct a continuous linear operator γ0 such that:

u ∈ U → γ0u ∈ H− 1
2 (Γ), (5.1)

such that γ0φ = φ|Γ for all φ ∈ D(Ω).

Let V be the Hilbert space

V =
{
v ∈ L2(0, T ;L2(Ω)); ∆v ∈ L2(0, T ;H−1(Ω))

}
,

with the norm:

||v||2V = ||v||2L2(0,T ;L2(Ω)) + ||∆v||2L2(0,T ;H−1(Ω)) .

41
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Using the density of D(Ω) in U , we obtain, directly, that the set

{
ηφ; η ∈ C∞

0 (0, T ), φ ∈ D(Ω)
}

is total in V . Using (5.1) we define γ0 for functions of V . To simplify the notation we use

the same in (5.1), that is, we write:

(γ0v)(t) = γ0v(t) for all t ∈ ]0, T [ .

It follows from (5.1) that γ0v ∈ L2(0, T ;H− 1
2 (Γ)) and

γ0 : V → L2(0, T ;H− 1
2 (Γ)) (5.2)

is linear and continuous.

Let us consider the Hilbert spaceH1
0 (0, T ;H

− 1
2 (Γ)) which is the space of w ∈ L2(0, T ;H− 1

2 (Γ))

such that
dw

dt
∈ L2(0, T ;H− 1

2 (Γ)) with w(0) = w(T ) = 0. The norm in this space is:

||w||
H1

0 (0,T ;H− 1
2 (Γ))

=

����
dw

dt

����
L2(0,T ;H− 1

2 (Γ))

.

The dual space of H1
0 (0, T ;H

− 1
2 (Γ)) is represented by H−1(0, T ;H− 1

2 (Γ)).

For the functions v ∈ V we define the map �γ0 in the following manner:

⟨�γ0v′, w⟩ = −
∫ T

0

(γ0v, w
′)
H− 1

2 (Γ)×H− 1
2 (Γ)

dt (5.3)

for all w ∈ H1
0 (0, T ;H

− 1
2 (Γ)).

From (5.3) we obtain:

|⟨�γ0v′, w⟩| ≤ ||γ0v||L2(0,T ;H− 1
2 (Γ))

· ||w′||
L2(0,T ;H− 1

2 (Γ))
.

By definition of norm in H1
0 (0, T ;H

− 1
2 (Γ)) we obtain:

|⟨�γ0v′, w⟩| ≤ ||γ0v||L2(0,T ;H−1(Γ)) · ||w||H1
0 (0,T ;H− 1

2 (Γ))
. (5.4)

or

||�γ0v′||H−1(0,T ;H− 1
2 (Γ))

≤ C||v||V .

We observe that if v = ηφ, η ∈ C∞
0 (0, T ) and φ ∈ D(Ω), then:

⟨�γ0v′, w⟩ = −
∫ T

0

(γ0(ηφ), w
′) dt = −

∫ T

0

η(γ0φ,w
′)L2(Γ) dt =

=

∫ T

0

η′(γ0φ,w)L2(Γ) dt = ⟨γ0(η′φ), w⟩,

that is, �γ0v′ = γ0v
′. We have proved the following:
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Using the density of D(Ω) in U , we obtain, directly, that the set

{
ηφ; η ∈ C∞

0 (0, T ), φ ∈ D(Ω)
}

is total in V . Using (5.1) we define γ0 for functions of V . To simplify the notation we use

the same in (5.1), that is, we write:

(γ0v)(t) = γ0v(t) for all t ∈ ]0, T [ .

It follows from (5.1) that γ0v ∈ L2(0, T ;H− 1
2 (Γ)) and

γ0 : V → L2(0, T ;H− 1
2 (Γ)) (5.2)

is linear and continuous.

Let us consider the Hilbert spaceH1
0 (0, T ;H

− 1
2 (Γ)) which is the space of w ∈ L2(0, T ;H− 1

2 (Γ))

such that
dw

dt
∈ L2(0, T ;H− 1

2 (Γ)) with w(0) = w(T ) = 0. The norm in this space is:

||w||
H1

0 (0,T ;H− 1
2 (Γ))

=

����
dw

dt

����
L2(0,T ;H− 1

2 (Γ))

.

The dual space of H1
0 (0, T ;H

− 1
2 (Γ)) is represented by H−1(0, T ;H− 1

2 (Γ)).

For the functions v ∈ V we define the map �γ0 in the following manner:

⟨�γ0v′, w⟩ = −
∫ T

0

(γ0v, w
′)
H− 1

2 (Γ)×H− 1
2 (Γ)

dt (5.3)

for all w ∈ H1
0 (0, T ;H

− 1
2 (Γ)).

From (5.3) we obtain:

|⟨�γ0v′, w⟩| ≤ ||γ0v||L2(0,T ;H− 1
2 (Γ))

· ||w′||
L2(0,T ;H− 1

2 (Γ))
.

By definition of norm in H1
0 (0, T ;H

− 1
2 (Γ)) we obtain:

|⟨�γ0v′, w⟩| ≤ ||γ0v||L2(0,T ;H−1(Γ)) · ||w||H1
0 (0,T ;H− 1

2 (Γ))
. (5.4)

or

||�γ0v′||H−1(0,T ;H− 1
2 (Γ))

≤ C||v||V .

We observe that if v = ηφ, η ∈ C∞
0 (0, T ) and φ ∈ D(Ω), then:

⟨�γ0v′, w⟩ = −
∫ T

0

(γ0(ηφ), w
′) dt = −

∫ T

0

η(γ0φ,w
′)L2(Γ) dt =

=

∫ T

0

η′(γ0φ,w)L2(Γ) dt = ⟨γ0(η′φ), w⟩,

that is, �γ0v′ = γ0v
′. We have proved the following:
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Theorem 5.1 The map �γ0 defined by (5.3) takes values in H−1(0, T ;H− 1
2 (Γ)) and

�γ0 : V → H−1(0, T ;H− 1
2 (Γ))

is linear and continuous.

Proof: As we have seen �γ0v = γ0v
′ for v = ηφ, with η ∈ C∞

0 (0, T ), φ ∈ D(Ω), the map

�γ0 is called trace application for functions v′ with v ∈ V . �

Now let us return to the study of trace on Σ for ultra weak solution z of Chapter 4,

(4.1).

In fact, let be θ ∈ C∞
0 (Q). Then θ is solution of the problem (4.5), Chapter 4, with

f = θ′′ −∆θ. Substituting this f in the expression (4.15), Chapter 4, we obtain:
∫

Q

z(θ′′ −∆θ) dxdt = 0,

because θ ∈ C∞
0 (Q). Whence

⟨z′′ −∆z, θ⟩ = 0 for all θ ∈ C∞
0 (Q).

Consequently,

z′′ −∆z = 0 a.e. in Q. (5.5)

As a consequence of (5.5), since z ∈ C0([0, T ];L2(Ω)), it follows that:

z′′ ∈ C0([0, T ];H−2(Ω)). (5.6)

Note that ∆: L2(Ω) → H−1(Ω) is linear and continuous.

Let us consider θ = ηφ, with η ∈ H2(0, T ), θ(T ) = θ′(T ) = 0 and φ ∈ H2
0 (Ω). By

(4.15) Chapter 4, definition of weak solution z of (4.1) Chapter 4, we have:
∫

Q

z(η′′φ− η∆φ) dxdt = −(z0, η′(0)φ) + ⟨z1, η(0)φ⟩. (5.7)

Integrating by parts twice with respect to t, applying Green’s identity and by regularity

of z given by (4.15) Chapter 4, we get:
∫

Q

z(η′′φ− η∆φ) dxdt = −(z(0), η′(0)φ)+

+⟨(z′(0), η(0)φ⟩+
∫ T

0
⟨z′′ −∆z, ηφ⟩ dt.

(5.8)

It follows from (5.7), (5.8) and (5.5), that:

−(z0, η′(0)φ) + ⟨z1, η(0)φ⟩ = (−z(0), η′(0)φ) + ⟨z′(0), η(0)φ⟩.
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Choosing conveniently η(0) and η′(0), we obtain

z(0) = z0, z′(0) = z1. (5.9)

�

Let us prove now that �γ0z = v. In fact, we define:

y(t) =

∫ t

0

z(s) ds,

where z is the ultra weak solution. Then y ∈ L2(0, T ;L2(Ω)) and from the equation (5.5)

we get:

∆y(t) = ∆

∫ t

0

z(s) ds =

∫ t

0

∆z(s) ds =

∫ t

0

z′′(s) ds = z′(t)− z′(0). (5.10)

From regularity we have z′ ∈ C0([0, T ];H−1(Ω)) and it follows that ∆y ∈ L2(0, T ;H−1(Ω)).

Thus, y ∈ V and by Theorem 5.1, we have:

�γ0y′ = �γ0z. (5.11)

Let (zµ)µ∈N be a sequence of solutions of the problem (4.29) Chapter 4. We obtain:

������
zµ → z in C0([0, T ];L2(Ω))

z′µ → z′ in C0([0, T ];H−1(Ω))
(5.12)

Let us consider

yµ(t) =

∫ t

0

zµ(s) ds.

Then

∆yµ = z′µ(t)− z′µ(0).

By convergences (5.12) applied to yµ , we get:

yµ → y in V.

Whence by Theorem 5.1 and definition (5.3) of �γ0 , we obtain:

�γ0y′µ = �γ0zµ → �γ0y′ = �γ0z in H−1(0, T ;H− 1
2 (Γ)). (5.13)

We know that zµ ∈ C1([0, T ];H1(Ω)), then we get γ0zµ ∈ C1([0, T ];H1/2(Γ)) and

γ0

∫ t

0

zµ(s) ds =

∫ t

0

(γ0zµ)(s) ds.
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Choosing conveniently η(0) and η′(0), we obtain

z(0) = z0, z′(0) = z1. (5.9)

�

Let us prove now that �γ0z = v. In fact, we define:

y(t) =

∫ t

0

z(s) ds,

where z is the ultra weak solution. Then y ∈ L2(0, T ;L2(Ω)) and from the equation (5.5)

we get:

∆y(t) = ∆

∫ t

0

z(s) ds =

∫ t

0

∆z(s) ds =

∫ t

0

z′′(s) ds = z′(t)− z′(0). (5.10)

From regularity we have z′ ∈ C0([0, T ];H−1(Ω)) and it follows that ∆y ∈ L2(0, T ;H−1(Ω)).

Thus, y ∈ V and by Theorem 5.1, we have:

�γ0y′ = �γ0z. (5.11)

Let (zµ)µ∈N be a sequence of solutions of the problem (4.29) Chapter 4. We obtain:

������
zµ → z in C0([0, T ];L2(Ω))

z′µ → z′ in C0([0, T ];H−1(Ω))
(5.12)

Let us consider

yµ(t) =

∫ t

0

zµ(s) ds.

Then

∆yµ = z′µ(t)− z′µ(0).

By convergences (5.12) applied to yµ , we get:

yµ → y in V.

Whence by Theorem 5.1 and definition (5.3) of �γ0 , we obtain:

�γ0y′µ = �γ0zµ → �γ0y′ = �γ0z in H−1(0, T ;H− 1
2 (Γ)). (5.13)

We know that zµ ∈ C1([0, T ];H1(Ω)), then we get γ0zµ ∈ C1([0, T ];H1/2(Γ)) and

γ0

∫ t

0

zµ(s) ds =

∫ t

0

(γ0zµ)(s) ds.

5.1. Concrete Representation of Ultra Weak Solutions 45

We have then,

(�γ0yµ, w) = −
∫ T

0

(γ0yµ, w
′) dt =

= −
∫ T

0

(∫ t

0

(γ0zµ)(s) ds, w
′
)
dt =

∫ T

0

(γ0zµ, w) dt,

that is,

�γ0zµ = �γ0y′µ = γ0zµ . (5.14)

Observe that

γ0zµ = vµ and vµ → v in L2(Σ). (5.15)

As L2(Σ) = L2(0, T ;L2(Γ)) ⊂ H−1(0, T ;H− 1
2 (Γ)) continuously, it follows from (5.13),

(5.14) and (5.15) that

�γ0z = v. (5.16)

Scholium. The ultra weak solution z of (4.1) Chapter 4, was defined by transposition

method at (4.15) Chapter 4. The existence was proved by Riesz’s representation of con-

tinuous linear form on L1(0, T ;L2(Ω)). Then the ultra weak solution z is identified to an

object of L∞(0, T ;L2(Ω)) the dual of L1(0, T ;L2(Ω)). After it was proved the regularity,

that is, z ∈ C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)), as shown in Theorem 4.2, Chapter 4.

In the present section we proved that the ultra weak solution is a genuine solution, that

is, z′′ −∆z = 0, a.e. in Q, cf. (5.5). z(0) = z0, z′(0) = z1 as in (5.5) and the boundary

condition z = v on Σ, cf. (5.16). �
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Chapter 6

Boundary Exact Controllability

6.1 Boundary Exact Controllability

We will give, first, a general formulation of HUM (Hilbert Uniqueness Method), idealized

by J.L. Lions [36] and [38] or [39]. We begin with an action on the boundary Σ of the

cylinder Q = Ω×]0, T [ , where Ω is a bounded open set of Rn with boundary Γ and T > 0

is a real number.

Let us consider the wave equation

y′′ −∆y = 0 in Q (6.1)

with initial condition

y(0) = y0, y′(0) = y1 in Ω (6.2)

and boundary condition

y = v on Σ = Γ×]0, T [ . (6.3)

Physically we can think that the above linear non homogeneous boundary value pro-

blem describe the vibrations of an elastic structure Ω of R3, when the action on the

system is done along the boundary Σ. It is interesting to observe that in the applications

the action is only on a part Σ0 of Σ.

Observe that the function y = y(x, t), solution of (6.1), (6.2) and (6.3) depends of

x ∈ Ω, t ∈ [0, T [ and v belongs to a certain space called space of controls. The function v

itself is defined as the control function. To make explicit this dependence we write for the

solution

y = y(x, t, v), y = y(v), y = y(x, t) or y = y(t). (6.4)

Problem of Exact Controllability. Given T > 0, find a Hilbert space H such that for

every pair of initial data {y0, y1} ∈ H, there exists a control v in the set of controls such

47
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that the solution y = y(x, t, v) of (6.1), (6.2) and (6.3) verifies the equilibrium condition:

y(x, T, v) = 0 and y′(x, T, v) = 0 (6.5)

for all x ∈ Ω or y(T ) = 0, y′(T ) = 0 for all x ∈ Ω.

Let us consider a part Σ0 of Σ, with positive measure, such that Σ0 ∩ Σ is empty and

consider the action of the following type:

y =

������
v on Σ0

0 on Σ\Σ0

(6.6)

The problem of exact controllability can be formulated as follows: given T > 0 find a

Hilbert space H such that for every pair of initial data {y0, y1} in H there exists a control

v belonging to the space of controls, defined on Σ0 , such that the solution y = y(x, t, v)

of (6.1), (6.2) and (6.6) verifies the equilibrium condition (6.5).

6.2 Description of HUM

The methodology of HUM is based on certain criterium of uniqueness and the con-

struction of a Hilbert H space, by completeness. The method takes in consideration the

uniqueness and regularity for solutions of the wave equation as developed in the Chapters

1, 2, 3. We will describe it by steps.

Step 1. Given {ϕ0, ϕ1} in D(Ω)×D(Ω), let us consider the homogeneous boundary value

problem ��������

ϕ′′ −∆ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(0) = ϕ0, ϕ′(0) = ϕ1 in Ω.

(6.7)

We know, Chapter 1, that (6.7) has strong solution. By Chapter 3 we obtain

∂ϕ

∂ν
∈ L2(Σ). (6.8)

Step 2. We solve the backward non homogeneous problem:�������������

ψ′′ −∆ϕ = 0 in Q,

ψ =



∂ϕ

∂ν
on Σ0,

0 on Σ\Σ0,

ψ(T ) = 0, ψ′(T ) = 0 in Ω.

(6.9)
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Remark 6.1 Note that (6.9) is a non homogeneous boundary value problem of the type

studied in Chapter 4. To obtain, from (6.9), the system (4.1) of Chapter 4, it is sufficient

to consider the change of variable T − t in place of t. Then ψ(T − t) is solution of (6.1),

with y0 = y1 = 0 on Ω. Note that v =
∂ϕ

∂ν
is in L2(Σ) by (6.8). We are in the situation

of Chapter 4. Consequently (6.9) is a well posed problem. By the regularity obtained in

Chapter 4, we can calculate ψ(0) ∈ L2(Ω) and ψ′(0) ∈ H−1(Ω).

The Operator Λ. From the solution ψ of (6.9), we define the application:

Λ{ϕ0, ϕ1} = {ψ′(0),−ψ(0)}.

Note that from {ϕ0, ϕ1} in D(Ω) × D(Ω) we obtain the solution ϕ = ϕ(x, t) of (6.7)

with regularity (6.8) for the normal derivative. Then, the problem (6.9) is well posed,

from which we define Λ. Thus Λ is well defined.

Step 3. Multiply both sides of equation (6.9)1 by ϕ = ϕ(x, t) solution of (6.7) and

integrate in Q. We obtain:
∫

Q

ψ′′ϕ dxdt−
∫

Q

∆ψϕdxdt = 0.

Analysis of the first integral – We have:

(ψ′, ϕ)′ = (ψ′′, ϕ) + (ψ′, ϕ′).

Integrating on ]0, T [ we obtain:

⟨ψ′(T ), ϕ(T )⟩ − ⟨ψ′(0), ϕ(0)⟩ =
∫

Q

ψ′′ϕ dxdt+

∫ T

0

(ψ′, ϕ′) dt.

By condition (6.9)3 we modify the last equality obtaining

∫

Q

ψ′′ϕ dxdt = −⟨ψ′(0), ϕ0⟩ −
∫ T

0

(ψ′, ϕ′) dt. (6.10)

By the same argument we modify the integral on the right hand side of (6.10), obtaining:

∫ T

0

(ψ′, ϕ′) dt = −(ψ(0), ϕ1)−
∫

Q

ψϕ′′ dxdt. (6.11)

Substituting (6.11) in (6.10) we obtain:

∫

Q

ψ′′ϕ dxdt = −⟨ψ′(0), ϕ0⟩+ ⟨ψ(0), ϕ1⟩+
∫

Q

ψϕ′′ dxdt. (6.12)
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Analysis of the second integral – Integrating by parts, we have:

−
∫

Q

∆ψϕdxdt =

∫

Q

∇ψ · ∇ϕ dxdt−
∫

Σ

∂ψ

∂ν
ϕ dΓ dt

and

−
∫

Q

∆ϕψ dxdt =

∫

Q

∇ϕ · ∇ψ dxdt−
∫

Σ

∂ϕ

∂ν
ψ dΣ.

Then

−
∫

Q

∆ψϕ dxdt = −
∫

Q

∆ϕψ dxdt+

∫

Σ

∂ϕ

∂ν
ψ dΓ dt. (6.13)

Adding (6.12) and (6.13), since ϕ′′ −∆ϕ = 0 a.e. in Q and also ψ′′ −∆ψ = 0 a.e. in Q,

by Chapter 5, we obtain:

−⟨ψ′(0), ϕ0⟩+ (ψ(0), ϕ1) +

∫

Σ

∂ϕ

∂ν
ψ dΓ dt = 0. (6.14)

Note that ψ =
∂ϕ

∂ν
on Σ0 and ψ = 0 on Σ\Σ0 . Then, from (6.14) we obtain:

−(ψ(0), ϕ1) + ⟨ψ′(0), ϕ0⟩ =
∫

Σ

(
∂ϕ

∂ν

)2

dΓ dt. (6.15)

Consider the first hand side of (6.15) as the inner product of {ψ′(0),−ψ(0)} with {ϕ0, ϕ1}.
We then obtain from (6.15):

⟨Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}⟩ = −(ψ(0), ϕ1)+

+⟨ψ′(0), ϕ1⟩ =
∫

Σ

(
∂ϕ

∂ν

)2

dΓ dt.
(6.16)

We define in D(Ω)×D(Ω) the quadratic form:

||{ϕ0, ϕ1}||F =

((
∂ϕ

∂ν

)2

dΓ dt

)1/2

(6.17)

which is a semi norm in D(Ω)×D(Ω). To obtain a norm, from (6.17), we need to prove:

if ϕ is a solution of (6.7) with {ϕ0, ϕ1} ∈ D(Ω)×D(Ω), then if
∂ϕ

∂ν
= 0 on Σ0 this implies

ϕ is zero in Q. This is true by Holmgren’s theorem, cf. Hörmander [23] and Lions [39].

Then, by Holmgren’s theorem it follows that the quadratic form (6.17) is, in fact, a norm

in D(Ω)×D(Ω).

Remark 6.2 The norm (6.17) induces in D(Ω)×D(Ω) the following inner product:

⟨
{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
F
=

∫

Σ

∂ϕ

∂ν

∂ζ

∂ν
dΓ dt,

where ζ = ζ(x, t) is the solution of (6.7) corresponding to the initial data {ζ0, ζ1} ∈
D(Ω)×D(Ω).
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F
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∫

Σ

∂ϕ

∂ν

∂ζ
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It follows from Remark 6.2 and (6.16) that:

⟨
Λ{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
=

⟨
{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
F
. (6.18)

By Schwarz inequality we obtain:

��⟨Λ{ϕ0, ϕ1}, {ζ0, ζ1}
⟩�� ≤ ��{ϕ0, ϕ1}

��
F

��{ζ0, ζ1}��
F
,

proving the continuity of the bilinear form defined by Λ in D(Ω) × D(Ω). Let us con-

sider the completion of D(Ω) × D(Ω) with respect to ∥{ϕ0, ϕ1}∥F defined by (6.17) and

represent by F this Hilbert space. The continuous bilinear form
{
{ϕ0, ϕ1}, {ψ0, ψ1}

}
→⟨

Λ{ϕ0, ϕ1}, {ζ0, ζ1}
⟩
has an extension, by continuity, to the closure F . We continue re-

presenting this extension with the same notation. Then, we obtain a continuous bilinear

form on the Hilbert space F which is coercive, by Remark 6.2. Then, by Lax-Milgram’s

Lemma, for each {η0, η1} ∈ F ′, dual of F , exists a unique {ϕ0, ϕ1} ∈ F such that

⟨
Λ{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
=

⟨
{η0, η1}, {ζ0, ζ1}

⟩
F ′×F

(6.19)

for all {ζ0, ζ1} ∈ F . Then, for each {η0, η1} ∈ F ′ exists a unique {ϕ0, ϕ1} ∈ F which is

solution of the equation Λ{ϕ0, ϕ1} = {η0, η1} in F ′. In fact Λ: F → F ′ is an isomorphism.

Consequently, for each {y1, y0} ∈ F ′ exists a unique {ϕ0, ϕ1} ∈ F such that

Λ{ϕ0, ϕ1} = {y1,−y0} in F ′.

Note that the map Λ was defined by Λ{ϕ0, ϕ1} = {ψ′(0),−ψ(0)}, where ψ is the solution

of the non homogeneous problem (6.9). Therefore,

ψ′(0) = y1 and ψ(0) = y0.

Thus, considering τ = T − t instead of t in (6.9) and the control v =
∂ϕ

∂ν
for (6.1), (6.2)

and (6.6), we have ψ = ψ(x, t) and y = y(x, t) are ultra weak solutions of the same non

homogeneous boundary value problem. By uniqueness of ultra weak solutions, it follows

that y(x, t) = ψ(x, t) for all (x, t) in Q. Therefore by (6.9)3 it follows that:

y(x, T ) = 0 and y′(x, T ) = 0 in Ω

which is the condition (6.5). �

Remark 6.3 Note that the operator Λ is symmetric, look Remark 6.2, for example. Then,

the solution {ϕ0, ϕ1} of the equation Λ{ϕ0, ϕ1} = {y1,−y0} can be obtained by a minimiza-

tion process. In fact, {ϕ0, ϕ1} is obtained by:

Min
{ζ0,ζ1}∈F

{
1

2
⟨Λ{ζ0, ζ0}, {ζ0, ζ1}⟩ − ⟨{y1,−y0}, {ζ0, ζ1}⟩

}
.
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For numerical analysis, cf. Glowinski, Li, Lions [19].

The next step is to characterize the spaces F and F ′ as Sobolev spaces. In fact, we

know by Chapter 3 that the weak solution ϕ = ϕ(x, t) of (6.7) satisfies the inequality:

∫

Σ

(
∂ϕ

∂ν

)2

dΓ dt ≤ C0 E(0) = C0

��{ϕ0, ϕ1}
��2

H1
0 (Ω)×L2(Ω)

. (6.20)

Since F is the completion with the norm defined by the right hand side of (6.20), we

obtain H1
0 (Ω)× L2(Ω) ⊂ F . In order to prove that F ⊂ H1

0 (Ω)× L2(Ω) we need to prove

that exists C1 such that

C1

��{ϕ0, ϕ1}
��2

H1
0 (Ω)×L2(Ω)

≤
∫

Σ

(
∂ϕ

∂ν

)2

dΓ dt. (6.21)

If we prove (6.21) it follows that F = H1
0 (Ω)×L2(Ω) and its dual is F ′ = H−1(Ω)×L2(Ω),

consequently everything is in order.

The inequality (6.20) is called direct and (6.21) is the inverse. To complete HUM for

the case of action on the boundary we need only to prove (6.21).

�

6.3 Inverse Inequality.

First let us fix some notations. With Ω we denote a bounded open set of Rn and x0

any point of Rn. represent by m(x) the vector x− x0 with components mk(x) = xk − x0
k ,

1 ≤ k ≤ n. If Γ is the boundary of Ω, we define:

Γ(x0) = {x ∈ Γ;m(x) · ν(x) > 0} and Γ∗(x
0) = {x ∈ Γ;m(x) · ν(x) ≤ 0}.

Σ(x0) = Γ(x0)×]0, T [ and Σ∗(x
0) = Γ∗(x

0)×]0, T [ .

R(x0) = sup
x∈Ω

||x− x0|| = ||m(x)||L∞(Ω) .

Theorem 6.1 Consider T (x0) = 2R(x0). If T > T (x0) then:

��ϕ0
��2

H1
0 (Ω)

+
��ϕ1

��2
L2(Ω)

≤ R(x0)

T − T (x0)

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓ dt, (6.22)

for all weak solutions ϕ = ϕ(x, t) of (6.7).
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��ϕ0
��2
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Proof: For completeness of the argument, we rewrite the identity (3.5) Chapter 3. In

fact, for all vector field q = (qk)1≤k≤n with qk ∈ C1(Ω), 1 ≤ k ≤ n and all weak solution ϕ

of (6.7), we have the identity:

1

2

∫

Σ

qk · νk
(
∂ϕ

∂ν

)2

dΓ dt =

(
ϕ′(t), qk

∂ϕ

∂xk

) ����
T

0

+

+
1

2

∫

Q

∂qk
∂xk

(|ϕ′|2 − |∇ϕ|2) dxdt+
∫

Q

∂qk
∂xj

∂ϕ

∂xk

∂ϕ

∂xj

dxdt.

Choose qk(x) = xk − x0
k , 1 ≤ k ≤ n. Then

n∑
k=1

∂qk
∂xk

= n and
∂qk
∂xj

∂ϕ

∂xk

∂ϕ

∂xj

= |∇ϕ|2. With

this choice for qk , the above identity changes in the following:

X +
n

2

∫

Q

(|ϕ′|2 − |∇ϕ|2) dxdt+
∫

Q

|∇ϕ|2 dxdt = 1

2

∫

Σ

mkνk

(
∂ϕ

∂ν

)2

dΓ dt,

where X =

(
ϕ′(t), qk

∂ϕ

∂xk

) ����
T

0

.

In Σ(x0) we have:

0 ≤ mk · νk ≤

(
n∑

k=1

m2
k

)1/2 ( n∑
k=1

ν2
k

)1/2

= ||m(x)|| ≤ R(x0).

Therefore:
∫

Σ

mkνk

(
∂ϕ

∂ν

)2

dΓ dt ≤
∫

Σ(x0)

mkνk

(
∂ϕ

∂ν

)2

dΓ dt ≤ R(x0)

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓ dt.

We obtain:

X +
n

2

∫

Q

(|ϕ′|2 − |∇ϕ|2) dxdt+
∫

Q

|∇ϕ|2 dxdt ≤ R(x0)

2

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓ dt. (6.23)

To the first hand side of (6.23) add and subtract
1

2

∫

Q

|ϕ′|2 dxdt and divide

∫

Q

|∇ϕ|2 dxdt

in two parts. Represent

∫

Q

(|ϕ′|2 − |∇ϕ|2)dxdt by Y . Then we obtain from (6.23):

X +
n− 1

2
Y + T E(0) ≤ R(x0)

2

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dxdt. (6.24)

Note that the energy E(t) is given by:

E(t) =
1

2

∫

Ω

(|ϕ′|2 + |∇ϕ|2) dx

and we have by energy conservation, that E(t) = E(0).
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Lemma 6.1 For all solution ϕ of the wave equation (6.7) we have:

Y =

∫

Q

(|ϕ′|2 − |∇ϕ|2) dxdt = (ϕ′(t), ϕ(t))
��T
0
.

Proof: It is sufficient multiply both sides of the equation (6.7)1 by ϕ and integrate by

parts. We have:

−
∫

Q

ϕ′2 dxdt+ (ϕ′(t), ϕ(t))
��T
0
+

∫

Q

|∇ϕ|2 dxdt = 0.

�

From Lemma 6.1 we obtain:

X +
n− 1

2
Y +

∫

Ω

ϕ′
(
m · ∇ϕ+

n− 1

2
ϕ

)
dx

��T
0
. (6.25)

Consider µ > 0 to be chosen later. We have:

∫

Ω

ϕ′
(
m · ∇ϕ+

n− 1

2
ϕ

)
dx ≤ µ

2

∫

Ω

ϕ′2 dx+
1

2µ

∫

Ω

(
m · ∇ϕ+

n− 1

2
ϕ

)2

dx. (6.26)

We modify the second integral of the right hand of (6.26) as follows:

∫

Q

(
m · ∇ϕ+

n− 1

2
ϕ

)2

dx =

∫

Ω

(m · ∇ϕ)2 dx+

∫

Ω

(n− 1)2

4
ϕ2 dx+

+(n− 1)

∫

Ω

(m · ∇ϕ)ϕ dx.

(6.27)

We have: ∫

Ω

(m · ∇ϕ)ϕ dx =

∫

Ω

n∑
k=1

mk
∂ϕ

∂xk

ϕ dx =
1

2

∫

q

n∑
k=1

mk
∂

∂xk

ϕ dx. (6.28)

By Gauss lemma, since ϕ = 0 on Σ, we obtain:
∫

Ω

∂

∂xk

(mkϕ
2) dx =

∫

Γ

νk ·mk ϕ
2 dΓ = 0

1

2

∫

Ω

n∑
k=1

mk
∂

∂xk

ϕ2 dx = −1

2

∫

Ω

n∑
k=1

∂mk

∂xk

ϕ2 dx = −n

2

∫

Ω

ϕ2 dx.

Substituting in (6.28) and then in (6.27) we obtain:

∫

Ω

(
m · ∇ϕ+

n− 1

2
ϕ

)2

dx =

∫

Ω

(m · ∇ϕ)2 dx+

+

[
(n− 1)2

4
− n(n− 1)

2

] ∫

Ω

ϕ2 dx

∫

Ω

(m · ∇ϕ)2 dx.
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4
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Ω

(m · ∇ϕ)ϕ dx.
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We have: ∫

Ω

(m · ∇ϕ)ϕ dx =

∫

Ω

n∑
k=1

mk
∂ϕ

∂xk

ϕ dx =
1

2

∫

q

n∑
k=1

mk
∂

∂xk

ϕ dx. (6.28)

By Gauss lemma, since ϕ = 0 on Σ, we obtain:
∫

Ω

∂

∂xk

(mkϕ
2) dx =

∫

Γ

νk ·mk ϕ
2 dΓ = 0

1

2

∫

Ω

n∑
k=1

mk
∂

∂xk

ϕ2 dx = −1

2

∫

Ω

n∑
k=1

∂mk

∂xk

ϕ2 dx = −n

2

∫

Ω

ϕ2 dx.

Substituting in (6.28) and then in (6.27) we obtain:

∫

Ω

(
m · ∇ϕ+

n− 1

2
ϕ

)2

dx =

∫

Ω

(m · ∇ϕ)2 dx+

+

[
(n− 1)2

4
− n(n− 1)

2

] ∫

Ω

ϕ2 dx

∫

Ω

(m · ∇ϕ)2 dx.
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Note that

∫

Ω

(m · ∇ϕ)2 dx =

∫

Ω

(
mk

∂ϕ

∂xk

)2

dx ≤
∫

Ω

(Σmk)
1/2

(
Σ

∂ϕ

∂xk

)1/2

dx =

=

∫

Ω

||m(x)||2 |∇ϕ|2 dx ≤ R(x0)

∫

Ω

|∇ϕ|2 dx.

Whence, ∫

Ω

(
m · ∇ϕ+

n− 1

2
ϕ

)2

dx ≤ R(x0)

∫

Ω

|∇ϕ|2 dx. (6.29)

Substituting (6.29) in (6.26) and taking µ = R(x0) we obtain:

∫

Ω

ϕ′
(
m · ∇ϕ+

n− 1

2
ϕ

)
dx ≤ R(x0)E(0). (6.30)

By (6.26) and (6.30) we obtain:

����X +
n− 1

2
Y

���� =
�����
(
ϕ′(t),m · ∇ϕ+

n− 1

2
ϕ

) ����
T

0

����� ≤

≤ 2

����
(
ϕ′(t),m · ∇ϕ+

n− 1

2
ϕ

)����
L∞(0,T )

≤ 2R(x0)E(0).

Since T (x0) = 2R(x0) we have:

����X +
n− 1

2
Y

���� ≤ T (x0)E(0).

Whence, by (6.24)

− T (x0)E(0) + TE(0) ≤ −
����X +

n− 1

2
Y

���� ≤

≤ X +
n− 1

2
Y + T (x0)E(0) ≤ R(x0)

2

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓ dt.

�
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Chapter 7

Internal Exact Controllability

7.1 Internal Exact Controllability

Let Ω be a bounded open set of Rn with regular boundary Γ. By w we represent an

open subset of Ω and by χw we denote the characteristic function of w. Let us consider

the boundary value problem:

∣∣∣∣∣∣∣∣

y′′ −∆y = hχw in Q

y = 0 on Σ

y(0) = y0, y′(0) = y1 in Ω

(7.1)

The exact controllability of (7.1) consists in given T > 0, find a Hilbert space H

such that for every {y0, y1} ∈ H exists a control h ∈ L2(w×]0, T [) such that the solution

y = y(x, t) of (7.1) satisfies:

y(T ) = 0 and y′(T ) = 0 in Ω. (7.2)

This type of problem is called internal exact controllability because the action is

in the cylinder w×]0, T [ contained in Q = Ω×]0, T [ .

In the following we will prove that HUM is well applied to solve the problem of internal

exact controllability. We describe it by steps.

Step 1. Given {ϕ0, ϕ1} ∈ D(Ω)×D(Ω) we solve the regular problem:

∣∣∣∣∣∣∣∣

ϕ′′ −∆ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(0) = ϕ0, ϕ′(0) = ϕ1 in Ω.

(7.3)

This mixed boundary value problem has a regular solution ϕ = ϕ(x, t).
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Step 2. With the solution ϕ = ϕ(x, t) of (7.3) we solve the backward problem:

��������

ψ′′ −∆ψ = ϕχw in Q,

ψ = 0 on Σ,

ψ(T ) = 0, ψ′(T ) = 0 in Ω.

(7.4)

The operator Λ. With the solution ψ = ψ(x, t) of (7.4) we define the map Λ by

Λ{ϕ0, ϕ1} = {ψ′(0),−ψ(0)}. (7.5)

Step 3. Multiply both sides of (7.3) by ψ solution of (7.4) and integrates on Q. We get:

∫ T

0

∫

Ω

ϕ′′ψ dxdt−
∫ T

0

∫

Ω

∆ϕψ dxdt = 0. (7.6)

We obtain, integrating by parts on ]0, T [ the derivative (ϕ′, ψ)′ = (ϕ′′, ψ) + (ϕ′, ψ′),

(ϕ′(T ), ψ′(T ))− (ϕ′(0), ψ′(0)) =

∫ T

0

(ϕ′′, ψ) dt+

∫ T

0

(ϕ′, ψ′) dt.

Since ψ(T ) = 0 it follows from the above equality:

−(ϕ1, ψ(0))−
∫ T

0

(ϕ′, ψ′) dt =

∫ T

0

(ϕ′′, ψ) dt.

We also have (ϕ, ψ′)′ = (ϕ′, ψ′) + (ϕ, ψ′′). By a similar argument we have:

−(ϕ0, ψ′(0))−
∫ T

0

(ϕ, ψ′′) dt =

∫ T

0

(ϕ′, ψ′) dt.

Consequently

∫ T

0

∫

Ω

ϕ′′ψ dxdt = −(ϕ1, ψ(0)) + (ϕ0, ψ′(0)) +

∫ T

0

∫

Ω

ϕψ′′ dxdt. (7.7)

Since ψ = 0 and ϕ = 0 on Σ, the Green’s formula gives:

∫ T

0

∫

Ω

∆ϕψ dxdt =

∫ T

0

∫

Ω

ϕ∆ψ dxdt. (7.8)

From (7.6), (7.7) and (7.8), noting that ψ is solution of (7.4) we obtain:

∫ T

0

∫

w

ϕ2 dxdt = (ψ′(0), ϕ0)− (ψ(0), ϕ1). (7.9)

By definition (7.5) of Λ we obtain

⟨
Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}

⟩
=

(
{ψ′(0),−ψ(0)}, {ϕ0, ϕ1}

)
F
= (ψ′(0), ϕ0)− (ψ(0), ϕ1).
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0
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∫ T
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Since ψ(T ) = 0 it follows from the above equality:
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∫ T
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∫ T
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∫ T

0
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∫ T

0

(ϕ′, ψ′) dt.

Consequently

∫ T

0
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ϕ′′ψ dxdt = −(ϕ1, ψ(0)) + (ϕ0, ψ′(0)) +

∫ T

0

∫

Ω

ϕψ′′ dxdt. (7.7)

Since ψ = 0 and ϕ = 0 on Σ, the Green’s formula gives:

∫ T

0

∫

Ω

∆ϕψ dxdt =

∫ T

0

∫

Ω

ϕ∆ψ dxdt. (7.8)

From (7.6), (7.7) and (7.8), noting that ψ is solution of (7.4) we obtain:

∫ T

0

∫

w

ϕ2 dxdt = (ψ′(0), ϕ0)− (ψ(0), ϕ1). (7.9)

By definition (7.5) of Λ we obtain

⟨
Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}

⟩
=

(
{ψ′(0),−ψ(0)}, {ϕ0, ϕ1}

)
F
= (ψ′(0), ϕ0)− (ψ(0), ϕ1).
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Then, by (7.9), we have:

⟨
Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}

⟩
=

∫ T

0

∫

w

ϕ2 dxdt. (7.10)

Let us define in D(Ω)×D(Ω) the seminorm

��{ϕ0, ϕ1}
��2

F
=

∫ T

0

∫

w

ϕ2 dxdt. (7.11)

Note that to obtain a norm from (7.11) we need to prove that if the solution ϕ = ϕ(x, t)

of (7.3) is zero in w×]0, T [ , then ϕ = 0 in Q. The Holmgren’s theorem says that there

exists T0 = T0(w), depending of w ⊂ Ω, such that for every T > T0 the unique solution

ϕ = ϕ(x, t) of (7.3) such that ϕ = 0 on w×]0, T [ is identically zero in Q.

Consequently for T > T0 the quadratic form (7.10) is a norm in D(Ω)×D(Ω).

Represent by F the completion of D(Ω)×D(Ω) with respect to the norm (7.11), which

is a Hilbert space. Note that if ζ = ζ(x, t) is the solution of (7.3) corresponding to {ζ0, ζ1}
belonging to D(Ω) × D(Ω), then the norm (7.11) is obtained from the inner product in

D(Ω)×D(Ω) defined by:

(
{ϕ0, ϕ1}, {ζ0, ζ1}

)
F
=

∫ T

0

∫

w

ϕζ dxdt.

Let us consider the bilinear form

⟨
Λ{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
=

∫ T

0

∫

w

ϕζ dxdt

defined in D(Ω) × D(Ω), which is continuous and coercive in D(Ω) × D(Ω). Then its

extension by continuity to the completion F is also continuous and coercive in F . It

follows by Lax-Milgram’s lemma, that given {y1,−y0} ∈ F ′, dual of F , there exists a

unique {ϕ0, ϕ1} ∈ F such that:

⟨
Λ{ϕ0, ϕ1}, {ζ0, ζ1}

⟩
=

⟨
{y1,−y0}, {ζ0, ζ1}

⟩
F ′×F

for all {ζ0, ζ1} ∈ F . Then, given {y1,−y0} ∈ F ′, exists {ϕ0, ϕ1} ∈ F such that:

Λ{ϕ0, ϕ1} = {y1,−y0} in F ′. (7.12)

By (7.12) and (7.5) we conclude that:

ψ(0) = y0 and ψ′(0) = y1

where ψ is the solution of (7.4). In (7.1) we consider h equal to the restriction of ϕ,

solution of (7.3), to w×]0, T [ . By uniqueness of solution of the linear wave equation we

have ψ(x, t) = y(x, t) in Q. Then y(T ) = 0 and y′(T ) = 0, which is (7.2). �
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Observe that the pair {ϕ0, ϕ1} is constructive, when we know F , because the bilinear

form is symmetric and therefore {ϕ0, ϕ1} is obtained by a minimization process as was

done in the boundary case, cf. Chapter 6.

The next step is to give a concrete characterization of the completion F . Note that,

when we consider ϕ ∈ L2(Ω), ϕ1 ∈ H−1(Ω), we obtained in Chapter 4, Theorem 4.1,

inequality (7.14), for ultra weak solution, which applied to (7.3) gives:

∫ T

0

∫

w

ϕ2 dxdt ≤ C0

(
|ϕ0|2L2(Ω) + ||ϕ1||2H−1(Ω)

)
=

= C0

��{ϕ0, ϕ1}
��2

L2(Ω)×H−1(Ω)
.

(7.13)

This implies

L2(Ω)×H−1(Ω) ⊂ F,

continuous and densely. To prove that F ⊂ L2(Ω)×H−1(Ω). We need to prove the inverse

inequality:

C1

��{ϕ0, ϕ1}
��2

L2(Ω)×H−1(Ω)
≤

∫ T

0

∫

w

ϕ2 dxdt. (7.14)

Suppose we have prove (7.14). Then, with (7.13) we conclude the equivalence of the

norms ||{ϕ0, ϕ1}||F and ∥{ϕ0, ϕ1}∥L2(Ω)×H−1(Ω). It follows that we can identify F to L2(Ω)×
H−1(Ω). Consequently its dual is F ′ = L2(Ω) × H1

0 (Ω). Therefore given {y1,−y0} ∈
L2(Ω)×H1

0 (Ω) we find a unique {ϕ0, ϕ1} ∈ L2(Ω)×H−1(Ω), solve the ultra weak boundary

value problem (7.3), which gives ϕ = ϕ(x, t), then the control h = h(x, t) is the restriction

of ϕ = ϕ(x, t) to w×]0, T [ . By the regularity of ultra weak solution, proved in Chapter 4,

follows that h ∈ L2(w×]0, T [). Consequently everything is in order. �

It is important to observe that the inverse inequality (7.14) will be proved for a re-

stricted class of open set w contained in Ω, that is, for w with a particular geometric

structure and T large enough.

7.2 The Inverse Inequality

We begin with the notation. As we have done in the Chapter 6, we divide the boundary

Γ of Ω in two pieces Γ(x0) and Γ∗(x
0), where x0 is a point of Rn.

We say that w ⊂ Ω is a neighborhood, in Ω, of Γ(x0), closure of Γ(x0), if there exists

some neighborhood O ⊂ Rn of Γ(x0) such that

w = Ω ∩ O. (7.15)
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We begin with the notation. As we have done in the Chapter 6, we divide the boundary

Γ of Ω in two pieces Γ(x0) and Γ∗(x
0), where x0 is a point of Rn.
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Observe that R(x0) was defined in Chapter 6. Then we have the theorem giving the

inverse inequality.

Theorem 7.1 If T > 2R(x0), exists a constant C > 0 such that:

��ϕ0
��2
L2(Ω)

+
��ϕ1

��2

H−1(Ω)
≤ C

∫ T

0

∫

w

ϕ2 dxdt (7.16)

for all ultra weak solution of (7.3), with ϕ0 ∈ L2(Ω) and ϕ1 ∈ H−1(Ω).

Proof: We begin substituting the proof of (7.16) by another equivalent inequality.

Step 1. If exists a constant C > 0 such that

��ϕ0
��2

H1
0 (Ω)

+
��ϕ1

��2
L2(Ω)

≤ C

∫ T

0

∫

w

ϕ′2 dxdt, (7.17)

for all weak solution ϕ = ϕ(x, t) of (7.3) with ϕ0 ∈ H1
0 (Ω) and ϕ1 ∈ L2(Ω), then we have the

inequality (7.16), for ultra weak solution ϕ = ϕ(x, t) when we take ϕ0 ∈ H1
0 (Ω) ⊂ L2(Ω),

ϕ1 ∈ L2(Ω) ⊂ H−1(Ω).

In fact, given {ϕ0, ϕ1} ∈ L2(Ω)×H−1(Ω) define χ ∈ H1
0 (Ω) such that −∆χ = ϕ1 in Ω.

Let us consider,

ψ(x, t) = −χ(x) +

∫ t

0

ϕ(x, s) ds,

where ϕ = ϕ(x, t) is the ultra weak solution of (7.3) with initial values ϕ0, ϕ1.

If we integrate (7.3)1 we obtain:

ϕ′(t)− ϕ′(0)−∆

∫ t

0

ϕ(x, s) ds = 0.

But ψ′(x, t) = ϕ(x, t) and ψ′′(x, t) = ϕ′(x, t). Then:

ψ′′(x, t)− ϕ1 +∆(ψ(x, t) + χ(x)) = 0.

By the definition of χ , the above equality implies:
��������

ψ′′ −∆ψ = 0 in Q,

ψ = 0 on Σ,

ψ(0) = χ , ψ′(0) = ϕ0.

(7.18)

Note that in (7.18) we have χ ∈ H1
0 (Ω) and ϕ0 ∈ L2(Ω), what implies the existence of

weak solution. If (7.17) is true we have from (7.18),

∥χ∥2H1
0 (Ω) +

��ϕ0
��2
L2(Ω)

≤ C

∫ T

0

∫

Ω

ϕ2 dxdt (7.19)

since ψ′(x, t) = ϕ(x, t).
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Remark 7.1 Let us define in H−1(Ω) an inner product. We know that ∆ is an isomor-

phism between H1
0 (Ω) and H−1(Ω). Let G = ∆−1. Then, for all pair u, v ∈ H−1(Ω) we

define

(u, v)H−1(Ω) = ⟨u,Gv⟩H−1(Ω)×H1
0 (Ω) = ((Gu,Gv))H1

0 (Ω)×H1
0 (Ω) ,

which is an inner product in H−1(Ω). The induced norm is:

∥v∥2H−1(Ω) = ((Gv,Gv)).

Then, ��ϕ1
��2

H−1(Ω)
= ((Gϕ1, Gϕ1)) = ((χ, χ)) = ∥χ∥2H1

0 (Ω) .

By Remark 7.1 we modify (7.19) obtaining:

��ϕ1
��2

H−1(Ω)
+
��ϕ0

��2
L2(Ω)

≤ C

∫ T

0

∫

w

ϕ2 dxdt.

�

Step 2. It follows from the above argument that in order to prove Theorem 7.1 it is

sufficient to prove the inequality (7.17) for weak solution ϕ = ϕ(x, t) of (7.3). We follows

Zuazua [70] and Fabre [11] to prove (7.17).

For T > 2R(x0) we know by Chapter 6, (6.22), that:

∫

Ω

(|∇ϕ0(x)|2 + |ϕ1(x)|2) dx ≤ R(x0)

T − 2R(x0)

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓdt

for the weak solution ϕ = ϕ(x, t) of (7.3).

Now, for ε > 0, T − 2ε > 2R(x0) we have:

E(0) =
1

2

∫

Ω

(|∇ϕ0(x)|2 + |ϕ1(x)|2) dx ≤ C

∫ T−ε

ε

∫

Γ(x0)

(
∂ϕ

∂ν

)2

dΓdt (7.20)

after the change of variables τ = (T − 2ε)t+ Tε, 0 ≤ t ≤ T that implies ε ≤ τ ≤ T − ε.

Consider h ∈ [C1(Ω)]n such that h · ν ≥ 0 for all x ∈ Γ, h = ν on Γ(x0) and h = 0 on

Ω\w. Let be η ∈ C1([0, T ]) such that η(0) = η(T ) = 0, η(t) = 1 in ]ε, T − ε[ . We define

q(x, t) = η(t)h(x) which belongs to W 1,∞(Ω) and satisfies:

������������

(i) q(x, t) = ν(x) for all (x, t) ∈ Γ(x0)×]ε, T − ε[ ;

(ii) q(x, t) · ν(x) ≥ 0 for all (x, t) ∈ Γ×]0, T [ ;

(iii) q(x, 0) = q(x, T ) = 0 for all x ∈ Ω;

(iv) q(x, t) = 0 for all (x, t) ∈ (Ω\w)×]0, T [ .

(7.21)
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�
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������������
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If we consider the multiplier qk
∂ϕ

∂xk

we obtain the following identity for all weak solution

ϕ = ϕ(x, t) of (7.3):

1

2

∫

Σ

q · ν
(
∂ϕ

∂ν

)2

dΓdt = (ϕ′(t), q · ∇ϕ)

����
T

0

+

+
1

2

∫

Q

div q(|ϕ′|2 − |∇ϕ|2) dxdt+

+

∫

Q

∂qk
∂xj

∂ϕ

∂xk

∂ϕ

∂xj

dxdt−
∫

Q

ϕ′q′ · ∇ϕ dxdt.

Applying this identity with the above defined vector field q, we obtain:

1

2

∫ T

0

∫

Γ

q · ν
(
∂ϕ

∂ν

)2

dΓdt ≥ 1

2

∫ T−ε

ε

∫

Γ(x0)

(
∂ϕ

∂ν

)2

dΓdt

because q(x, t) = ν on Γ(x0)×]ε, T − ε[ , and

(ϕ′(t), q · ∇ϕ)

����
T

0

= 0, because η(0) = η(T ) = 0.

Since q ∈ C1(Ω×]0, T [), div q is bounded. We also have:
����
∫

Q

∂qk
∂xj

∂ϕ

∂xk

∂ϕ

∂xj

dxdt

���� ≤ C
∑
k,j

∫

w×]0,T [

∂ϕ

∂xk

∂ϕ

∂xj

dxdt
Cauchy inequality

≤

≤ C

∫ T

0

∫

w

|∇ϕ|2 dxdt ≤ C

∫ T

0

∫

w

(|ϕ′|2 + |∇ϕ|2) dxdt.

The same argument to estimate −
∫

Q

ϕ′q′ · ∇ϕ dxdt. Then,

∫ T−ε

ε

∫

Γ(x0)

(
∂ϕ

∂ν

)2

dΓdt ≤ C

∫ T

0

∫

w

(|ϕ′|2 + |∇ϕ|2) dxdt, (7.22)

where C > 0 is a constant depending on ∥q∥W 1,∞(Ω) .

From (7.20) and (7.22) we get:

E(0) ≤ C

∫ T−ε

ε

∫

w

(|ϕ′|2 + |∇ϕ|2) dxdt, (7.23)

Step 3. We prove in this step that:

��ϕ0
��
H1

0 (Ω)
+
��ϕ1

��2
L2(Ω)

≤ C

∫ T

0

∫

w

ϕ′2 dxdt+ C

∫ T

0

∫

w

ϕ2 dxdt. (7.24)

In fact, let w0 ⊂ Ω be a neighborhood of Γ(x0) such that:

Ω ∩ w0 ⊂ w.
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Note that (7.23) is true for each neighborhood of Γ(x0), then it is correct for w0 . We

obtain:

E(0) ≤ C

∫ T−ε

ε

∫

w0

(ϕ′2 + |∇ϕ|2) dxdt. (7.25)

Consider ρ ∈ W 1,∞(Ω), ρ ≥ 0 such that

ρ(x) = 1 in w0 and ρ(x) = 0 in Ω\w.

Define p(x, t) in Q by

p(x, t) = η(t)ρ2(x)

where η(t) is the function above defined. We have:

�������������

(i) p(x, t) = 1 in w0×]ε, T − ε[ ;

(ii) p(x, t) = 0 in (Ω\w)×]0, T [ ;

(iii) p(x, 0) = p(x, T ) = 0 in Ω;

(iv)
|∇p|
p

∈ L∞(Q).

(7.26)

Multiply both sides of (7.3)1 by pϕ and integrate by parts in Q. We obtain:

∫

Q

pϕϕ′′ dxdt−
∫

Q

pϕ∆ϕ dxdt = 0. (7.27)

Analysis of the first integral

∫ T

0

(ϕ′′, pϕ) dt = (ϕ′, pϕ)

����
T

0

−
∫ T

0

(ϕ′, pϕ′) dt−
∫ T

0

(p′ϕ, ϕ′) dt,

p(x, 0) = p(x, T ) = 0, then:

∫ T

0

(ϕ′′, pϕ) dt = −
∫ T

0

(ϕ′, pϕ′) dt−
∫ T

0

(p′ϕ, ϕ′) dt. (7.28)

Analysis of the second integral

−
∫

Ω

∆ϕ · pϕ dxdt =

∫

Ω

∇ϕ · ∇(pϕ) dx−
∫

Γ

pϕ
∂ϕ

∂ν
dΓ.

The surface integral on Γ is zero because ϕ is solution of (7.3). Then:

−
∫

Ω

∆ϕ · pϕ dxdt =

∫ T

0

∫

w

p∇ϕ · ∇ϕ dxt+

∫ T

0

∫

w

∇p · ∇ϕϕ dxdt, (7.29)

because p(x, t) = 0 in Ω\w, p(x, t) = η(t)ρ2(x).
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����
T

0
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−
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Ω

∆ϕ · pϕ dxdt =

∫

Ω

∇ϕ · ∇(pϕ) dx−
∫

Γ

pϕ
∂ϕ

∂ν
dΓ.

The surface integral on Γ is zero because ϕ is solution of (7.3). Then:

−
∫

Ω

∆ϕ · pϕ dxdt =

∫ T

0

∫

w

p∇ϕ · ∇ϕ dxt+

∫ T

0

∫

w

∇p · ∇ϕϕ dxdt, (7.29)

because p(x, t) = 0 in Ω\w, p(x, t) = η(t)ρ2(x).

7.2. The Inverse Inequality 65

We then obtain from (7.27), (7.28) and (7.29):

∫ T

0

∫

w

p|∇ϕ|2 dxdt =
∫ T

0

∫

w

pϕ′2 dxdt+

∫ T

0

∫

w

p′ϕϕ′ dxdt−

−
∫ T

0

∫

w

∇p · ∇ϕϕ dxdt.

(7.30)

By (7.30) and (7.26) we obtain:

∫ T

0

∫

w

p|∇ϕ|2 dxdt ≤ C

∫ T

0

∫

w

(|ϕ′|2 + |ϕ|2) dxdt+

+

����
∫ T

0

∫

w

∇p · ∇ϕϕ dxdt

���� .
(7.31)

By (7.30) we obtain:

����
∫ T

0

∫

w

∇p · ∇ϕϕ dxdt

���� ≤
1

2

∫ T

0

∫

w

p|∇ϕ|2 dxdt+

+
1

2

∫ T

0

∫

w

|∇p|2

p
ϕ2 dxdt.

(7.32)

By (7.31), (7.32) and (7.26) we have:

∫ T−ε

ε

∫

w

|∇ϕ|2 dxdt ≤ C

∫ T

0

∫

w

(ϕ′2 + ϕ2) dxdt. (7.33)

By (7.33) and (7.25) follows:

��ϕ0
��2

H1
0 (Ω)

+ |ϕ′|2L2(Ω) ≤ C

∫ T

0

∫

w

ϕ′2 dxdt+ C

∫ T

0

∫

w

ϕ2 dxdt. (7.34)

�

From (7.34) and hidden regularity, Chapter 4, we obtain

∫

Σ(x0)

(
∂ϕ

∂ν

)2

dΓdt ≤ C

∫ T

0

∫

w

(ϕ′2 + ϕ2) dxdt. (7.35)

Step 5. Suppose (7.17) is not true. Then given a natural number n exists initial data

�ϕ0
n ,

�ϕ′
n such that the solution �ϕn of (7.3) corresponding to this initial conditions satisfies:

����ϕ0
n

���
2

H1
0 (Ω)

+
����ϕ1

n

���
2

L2(Ω)
≥ n

����ϕ′
n

���
2

L2(0,T ;L2(w))
.

Let us define

K =

(����ϕ0
n

���
2

H1
0 (Ω)

+
����ϕ1

n

���
2

L2(Ω)

)1/2

,
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and

ϕ0
n =

�ϕ0
n

K
; ϕ1

n =
�ϕ1
n

K
; ϕn =

�ϕn

K
·

We obtain �������
∥ϕ′

n∥
2
L2(0,T ;L2(w)) ≤

1

n��ϕ0
n

��
H1

0 (Ω)
+
��ϕ1

n

��2
L2(Ω)

= 1
(7.36)

From (7.36) we obtain:

lim
n→∞

∫ T

0

∫

w

ϕ′2
n dxdt = 0. (7.37)

From (7.36) we also obtain subsequences such that:

ϕ0
n ⇀ ϕ0 in H1

0 (Ω) and ϕ1
n ⇀ ϕ1 in L2(Ω)

weakly. The solution ϕn of (7.3) corresponding to the initial data ϕ0
n , ϕ

1
n has the estimates:

������
ϕn is bounded in L∞(0, T ;H1

0 (Ω)),

ϕ′
n is bounded in L∞(0, T ;L2(Ω)).

(7.38)

The estimate (7.38) is true in w instead of Ω. Then, there exists a subsequence ϕn such

that ������
ϕn ⇀ ϕ weak star in L∞(0, T ;H1

0 (Ω)),

ϕ′
n ⇀ ϕ′ weak star in L∞(0, T ;L2(Ω)).

(7.39)

Since H1
0 (Ω) ⊂ L2(Ω) is compact, the estimates (7.38) and Aubin-Lions compactness

theorem, we obtain a subsequence ϕn such that

ϕn → ϕ strongly in L2(0, T ;L2(w)). (7.40)

From (7.37), (7.39)2 and Banach-Steinhauss theorem, it follows that ϕ′(x, t) = 0 on

w×]0, T [ , that is, ϕ(x, t) is constant with respect to t in w×]0, T [ . But ϕ = 0 on Σ0

because ϕ is solution of (7.3). Then ϕ(x, t) = 0 on w×]0, T [ , by Holmgren’s theorem.

Then, by (7.40) we obtain:

ϕn → 0 strongly in L2(0, T ;L2(w)).

Then by (7.35) for ϕn we obtain:

∂ϕn

∂ν
→ 0 in L2(Σ0).

By hidden inequality it follows that ϕ0
n → 0 in H1

0 (Ω) and ϕ1
n → 0 in L2(Ω) what is a

contradiction with (7.36)2 . �
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Chapter 8

Exact Controllability for Timoshenko

System

8.1 Exact Controllability for Timoshenko System

In this section we are interested in the exact controllability of the system:

∣∣∣∣∣∣
y′′ − ayxx − zx + y = 0

z′′ − bzxx + yx = 0
(8.1)

which is motivated by questions of one dimensional elasticity. In fact, the system (8.1)

has its origin in the study of transverse vibrations of beams when we consider the efects of

rotatory inertia. It is called, by S. Timoshenko [68], model for transverse vibrations of a

beam when we consider rotatory inertia and shearing deformation. Note that a and b are

positive constants. We suppose the beam of lenght L = 1. The transverse displacement

of the point x, for 0 ≤ x ≤ 1 at the instant t, 0 ≤ t ≤ T , that is, the deformation curve,

is represented by z = z(x, t). We denote by y = y(x, t) the slope of the deformation curve

z = z(x, t) motivated by the rotatory action.

Let us represent by Ω the segment [0, 1] of the real line R, which represents the beam

in equilibrium. By Q we represent the rectangle Ω×]0, T [ of the plane R2, where T is a

positive real number. We denote by y′ and yx the derivatives, respectively, with respect

to t and x, of the function y = y(x, t). We then consider the non homogeneous mixed

problem: ∣∣∣∣∣∣
y′′ − ayxx − zx + y = 0 in Q,

z′′ − bzxx + yx = 0 in Q,
(8.2)
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∣∣∣∣∣∣
y(0, T ) = v(t), y(1, t) = 0 in ]0, T [ ,

z(0, T ) = w(t), z(1, t) = 0 in ]0, T [ .
(8.3)

∣∣∣∣∣∣
y(x, 0) = y0(x), y′(x, 0) = y1 in Ω ,

z(x, 0) = z0(x), z′(x, 0) = z1 in Ω .
(8.4)

The exact controllability for (8.1) is formulated as follows: given T > 0 find a Hilbert

space H such that for every set {y0, y1}, {z0, z1} in H, there exists a pair of controls v(t),

w(t) in L2(0, T ) such that the solution y = y(x, t), z = z(x, t) of (8.2), (8.3) and (8.4)

satisfy the condition: ∣∣∣∣∣∣
y(x, T ) = 0, y′(x, T ) = 0 in Ω,

z(x, T ) = 0, z′(x, T ) = 0 in Ω.
(8.5)

In the present section we solve the above problem of exact controllability for the system

(8.1) by HUM, idealized by J.L. Lions [36] and [38]. For the case when a, b are variable

cf. Medeiros [47].
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8.2 Exact Controllability for the Timoshenko System

by HUM

In the present section it is described how to apply HUM in the present situation. A

summary of proofs of the properties of solution is done in the next paragraphs.

Theorem 8.1 Suppose a and b real numbers such that:

min{a, b} > 1 and α = max

{
1√
a
,
1√
b

}
,

and let be T > 2α. Then, for each set of initial values {y0, y1} and {z0, z1} in L2(0, 1)×
H−1(0, 1) exists a pair of controls v(t) and w(t) in L2(0, T ) such that the solution y =

y(x, t) and z = z(x, t) of (8.2), (8.3) and (8.4) satisfies the condition (8.5).

Proof: The proof by HUM will be done in the following steps.

Step 1. Given {ϕ0, ϕ1} and {ψ0, ψ1} in D(0, 1)×D(0, 1) we solve the regular homogeneous

mixed problem: ������
ϕ′′ − aϕxx − ψxx + ϕ = 0 in Q,

ψ′′ − bψxx + ϕx = 0 in Q,
(8.6)

������
ϕ(0, t) = 0, ϕ(1, t) = 0 in Ω,

ψ(0, t) = 0, ψ(1, t) = 0 in Ω,
(8.7)

������
ϕ(x, 0) = ϕ0(x), ϕ′(x, 0) = ϕ1(x) in Ω,

ψ(x, 0) = ψ0(x), ψ′(x, 0) = ψ1(x) in Ω.
(8.8)

The above mixed problem (8.6), (8.7) and (8.8) has only one solution ϕ = ϕ(x, t),

ψ = ψ(x, t) satisfying:

ϕx(0, t), ψx(0, t) are in L2(0, T ). (8.9)

Step 2. With the solution ϕ = ϕ(x, t) and ψ = ψ(x, t) of Step 1, we solve the backward

problem: ������
ξ′′ − aξxx − ζx + ξ = 0 in Q,

ζ ′′ − bζxx + ξx = 0 in Q.
(8.10)

������
ξ(0, t) = −aϕx(0, t), ξ(1, t) = 0 in ]0, T [ ,

ζ(0, t) = −bψx(0, t), ζ(1, t) = 0 in ]0, T [ ,
(8.11)
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������
ξ(x, T ) = 0, ξ′(x, T ) = 0 in Ω,

ζ(x, T ) = 0, ζ ′(x, T ) = 0 in Ω.
(8.12)

Note that (8.10), (8.11) and (8.12) has only one solution ξ = ξ(x, t) and

ζ = ζ(x, t).

The operator Λ. For all {ϕ0, ϕ1}, {ψ0, ψ1} in D(0, 1)×D(0, 1) we solve (8.6), (8.7) and

(8.8). With the solution ϕ = ϕ(x, t), ψ = ψ(x, t), satisfying (8.9), we solve (8.10), (8.11)

and (8.12), obtaining ξ = ξ(x, t), ζ = ζ(x, t), making sense to calculate ξ(0) = ξ(x, 0),

ζ(0) = ζ(x, 0), ξ′(0) = ξ′(x, 0) and ζ ′(0) = ζ ′(x, 0). Then, is well defined the map:

Λ{ϕ0, ϕ1, ψ0, ψ1} = {ξ′(0),−ξ(0), ζ ′(0),−ζ(0)} (8.13)

for all {ϕ0, ϕ1}, {ψ0, ψ1} in D(0, 1)×D(0, 1).

Step 3. Multiply both sides of (8.6)1 by ξ and (8.6)2 by ζ, solution of (8.10), (8.11) and

(8.12), and integrate in Q. We obtain, after integration by parts:

(ξ′(0), ϕ0)− (ξ(0), ϕ1) + (ζ ′(0), ψ0)− (ζ(0), ψ1) =

=

∫ T

0

aϕ2
x(0, t) dt+

∫ T

0

bψ2
x(0, t) dt.

(8.14)

Observe that the second member of (8.14) is a consequence of the boundary conditions

ξ(0, t) = −aϕx(0, t) and ζ(0, t) = −bψx(0, t).

From (8.13) and (8.14) we obtain:

⟨Λ{ϕ0, ϕ1, ψ0, ψ1}, {ϕ0, ϕ1, ψ0, ψ1}⟩ =

= ({ξ′(0),−ξ(0), ζ ′(0),−ζ(0)}, {ϕ0, ϕ1, ψ0, ψ1})F =

= (ξ′(0), ϕ0)− (ξ(0), ϕ1) + (ζ ′(0), ψ0)− (ζ(0), ψ1) =

=

∫ T

0

aϕ2
x(0, t) dt+

∫ T

0

bψ2
x(0, t) dt.

(8.15)

We shall prove at the end of the section, cf. §4, the existence of positive constants C0 ,

C1 such that:

C0 ∥{ϕ0, ϕ1, ψ0, ψ1}∥2F

≤
∫ T

0

aϕ2
x(0, t) dt+

∫ T

0

bψ2
x(0, t) dt ≤

≤ C1 ∥{ϕ0, ϕ1, ψ0, ψ1}∥2F .

(8.16)

Note that in (8.16) we have, by definition

��{ϕ0, ϕ1, ψ0, ψ1}
��2

F
=

∫ 1

0

(|ϕ1(x)|2 + |ϕ0
x(x)|2 + |ψ1(x)|2 + |ψ0

x(x)|2) dx, (8.17)
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������
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From (8.13) and (8.14) we obtain:
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= ({ξ′(0),−ξ(0), ζ ′(0),−ζ(0)}, {ϕ0, ϕ1, ψ0, ψ1})F =

= (ξ′(0), ϕ0)− (ξ(0), ϕ1) + (ζ ′(0), ψ0)− (ζ(0), ψ1) =

=

∫ T

0

aϕ2
x(0, t) dt+

∫ T

0

bψ2
x(0, t) dt.
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We shall prove at the end of the section, cf. §4, the existence of positive constants C0 ,

C1 such that:

C0 ∥{ϕ0, ϕ1, ψ0, ψ1}∥2F

≤
∫ T

0

aϕ2
x(0, t) dt+

∫ T

0

bψ2
x(0, t) dt ≤

≤ C1 ∥{ϕ0, ϕ1, ψ0, ψ1}∥2F .

(8.16)

Note that in (8.16) we have, by definition

��{ϕ0, ϕ1, ψ0, ψ1}
��2

F
=

∫ 1

0

(|ϕ1(x)|2 + |ϕ0
x(x)|2 + |ψ1(x)|2 + |ψ0

x(x)|2) dx, (8.17)
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which is a norm in (H1
0 (0, 1)× L2(0, 1))2.

By (8.16) it follows that ∥{ϕ0, ϕ1, ψ0, ψ1}∥F defined by (8.17) is a norm in (D(0, 1) ×
D(0, 1))2, equivalent to the norm of (H1

0 (0, 1)×L2(0, 1))2 defined by (8.17). The operator

Λ defined by (8.13) is linear and continuous with respect to the norm || · ||F . Then it has

a unique extension, by continuity, to the closure of (D(0, 1) × D(0, 1))2 with respect to

|| ||F , which, by (8.16) is equivalent to the norm of (H1
0 (0, 1)×L2(0, 1))2 given by (8.17).

Therefore, F = (H1
0 (0, 1)× L2(0, 1))2 and we have

Λ: F → F ′; (8.18)

F ′ dual of F , because Λ is also coercive. This (8.18) is a consequence of Lax-Milgram

lemma. Note, also, that F ′ = (H−1(0, 1)× L2(0, 1))2.

It then follows that Λ is an isomorphism between F = (H1
0 (0, 1)×L2(0, 1))2 and its dual

F ′ = (H−1(0, 1)×L2(0, 1))2. Consequently, given {y0, y1, z0, z1} such that {y1,−y0}, {z1,−z0}
∈ H−1(0, 1)× L2(0, 1), the equation

Λ{ϕ0, ϕ1, ψ0, ψ1} = {y1,−y0, z1,−z0}, (8.19)

has a unique solution {ϕ0, ϕ1, ψ0, ψ1} such that {ϕ0, ϕ1}, {ψ0, ψ1} ∈ H1
0 (0, 1)× L2(0, 1).

By (8.13) and (8.19) we conclude that the unique solution cf (8.10), (8.11) and (8.12)

satisfies (8.4). Then, the unique solution of (8.2), (8.3) and (8.4) with controls:

v(t) = −aϕx(0, t) and w(t) = −bψx(0, t) (8.20)

satisfies (8.5), what we would like to prove. �
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8.3 Basic Results on Solutions of the Timoshenko

System

Let us begin with the study of regularity for solutions of the following mixed problem:

∣∣∣∣∣∣
ϕ′′ − aϕxx − ψx + ϕ = f in Q,

ψ′′ − bψxx + ϕx = g in Q,
(8.21)

∣∣∣∣∣∣
ϕ(0, t) = 0, ϕ(1, t) = 0 in ]0, T [ ,

ψ(0, t) = 0, ψ(1, t) = 0 in ]0, T [ ,
(8.22)

∣∣∣∣∣∣
ϕ(x, 0) = ϕ0(x), ϕ′(x, 0) = ϕ1(x) in Ω,

ψ(x, 0) = ψ0(x), ψ′(x, 0) = ψ1(x) in Ω.
(8.23)

Theorem 8.2 Given

ϕ0, ψ0 ∈ H1
0 (0, 1); ϕ1, ψ1 ∈ L2(0, 1); f, g ∈ L1(0, 1;L2(0, 1)), (8.24)

exists only one weak solution {ϕ, ψ} of (8.21), (8.22) and (8.23) satisfying the conditions:

ϕ, ψ ∈ L∞(0, T ;H1
0 (0, 1)), (8.25)

ϕ′, ψ′ ∈ L∞(0, T ;L2(0, 1)). (8.26)

The mapping

{{ϕ0, ψ0}, {ϕ1, ψ1}, {f, g}} → {{ϕ, ψ}, {ϕ′, ψ′}} (8.27)

is continuous.

Theorem 8.3 Given

ϕ0, ψ0 ∈ H1
0 (0, 1) ∩H2(0, 1);ϕ1, ψ1 ∈ H1

0 (0, 1);

f, g ∈ W 1,1(0, T ;H1
0 (0, 1))

(8.28)

exists only one strong solution of (8.21), (8.22) and (8.23) satisfying the conditions:

ϕ, ψ ∈ L∞(0, T ;H1
0 (0, 1) ∩H2(0, 1)), (8.29)

ϕ′, ψ′ ∈ L∞(0, T ;H1
0 (0, 1)). (8.30)

The mapping

{{ϕ0, ψ0}, {ϕ1, ψ1}, {f, g}} → {{ϕ, ψ}, {ϕ′, ψ′}}

is continuous.
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The mapping
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is continuous.

Theorem 8.3 Given

ϕ0, ψ0 ∈ H1
0 (0, 1) ∩H2(0, 1);ϕ1, ψ1 ∈ H1

0 (0, 1);

f, g ∈ W 1,1(0, T ;H1
0 (0, 1))

(8.28)

exists only one strong solution of (8.21), (8.22) and (8.23) satisfying the conditions:

ϕ, ψ ∈ L∞(0, T ;H1
0 (0, 1) ∩H2(0, 1)), (8.29)

ϕ′, ψ′ ∈ L∞(0, T ;H1
0 (0, 1)). (8.30)

The mapping

{{ϕ0, ψ0}, {ϕ1, ψ1}, {f, g}} → {{ϕ, ψ}, {ϕ′, ψ′}}

is continuous.
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Proof of the Theorem 8.2.

By Galerkin method we prove existence of local solution. The a priori estimates permits

to extend the solution and obtain, in the limit, the unique solution. It is shown how to

obtain these estimates.

In fact, multiply both sides of (8.21)1 by ϕ′ and of (8.21)2 by ψ′ and integrate on (0, 1).

We obtain: ������
(ϕ′′, ϕ′)− a(ϕxx, ϕ

′)− (ψx, ϕ
′) + (ϕ, ϕ′) = (f, ϕ′)

(ψ′′, ψ′)− b(ψxx, ψ
′) + (ϕx, ψ

′) = (g, ψ′)
(8.31)

Note that (·, ·) is the inner product in L2(0, 1). Then, from (8.31) we obtain:

�������

1

2

d

dt
(|ϕ′(t)|2 + a||ϕ(t)||2 + |ϕ(t)|2) = (f, ϕ′) + (ψx, ϕ

′)

1

2

d

dt
(|ψ′(t)|2 + b||ψ(t)||2) = (g, ψ′)− (ϕx, ψ

′)

(8.32)

Observe that | · |, || · || are the norm, respectively, in L2(0, 1) and H1(0, 1). By addition of

the equations (8.32) we obtain:

1

2

d

dt
(|ϕ′(t)|2 + |ψ′(t)|2 + a||ϕ(t)||2 + b||ψ(t)||2 + |ϕ(t)|2) =

= (f, ϕ′) + (g, ψ′) + (ψx, ϕ
′)− (ϕx, ψ

′).
(8.33)

Let us define the energy associated to (8.21), (8.22) and (8.23) by:

E(t) =
1

2

(
|ϕ′(t)|2 + |ψ′(t)|2 + a||ϕ(t)||2 + b||ψ(t)||2 + |ϕ(t)|2

)
(8.34)

From (8.33) and (8.32) it follows:

E ′(t) ≤ 1

2

(
|f(t)|+ |f(t)| |ϕ′(t)|2 + |g(t)|+ |g(t)| |ψ′(t)|2 +

+ ||ψ(t)||2 + |ϕ′(t)|2 + ||ϕ(t)||2 + |ψ′(t)|2
)
.

Then:

E ′(t) ≤ 1

2

(
|f(t)|+ |g(t)|

)
+ h(t)E(t), (8.35)

where

h(t) = |f(t)|+ |g(t)|+ 1

a
+

1

b
∈ L2(0, T ).

Integrating (8.35) we obtain:

E ′(t) ≤ E(0) +
1

2

∫ T

0

(
|f(t)|+ |g(t)|

)
dt+

∫ t

0

h(s)E(s) ds. (8.36)

From Gronwall’s inequality we have from (8.36):

E(t) ≤ C
(
∥f∥L1(0,T ;L2(0,1)) + ∥g∥L1(0,T ;L2(Ω)) + E0

)
(8.37)
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where E0 = E(0) .

From (8.37) it follows that Galerkin approximations are bounded in L∞(0, T ;L2(0, 1))

and L∞(0, T ;H1
0 (0, 1)), which is sufficient to obtain what claims Theorem 8.2. �

Proof of the Theorem 8.3.

The same remark done in the proof of the Theorem 8.2, about Galerkin approximations,

is true here. Then we will do a priori estimates.

In fact, multiply both sides of (8.21)1 by −ϕ′
xx and of (8.21)2 by −ψ′

xx and integrate

on ]0, 1[ . We obtain:

������
(ϕ′′,−ϕ′

xx)− a(ϕxx,−ϕ′
xx)− (ψx, ϕ

′
xx) + (ϕ,−ϕ′

xx) = (f,−ϕ′
xx)

(ψ′′,−ψ′
xx)− b(ψxx,−ψ′

xx) + (ϕx,−ψ′
xx) = (g,−ψ′

xx)
(8.38)

Integrating by parts (8.38), we have:

�������

1

2

d

dt

(
|ϕ′

x|2 + a|ϕxx|2 + |ϕx|2
)
= (fx, ϕ

′
x)− (ψx, ϕ

′
xx)

1

2

d

dt

(
|ψ′

x|2 + b|ψxx|2
)
= (gx, ψ

′
x) + (ϕx, ψ

′
xx)

(8.39)

Remark 8.1 Note that

d

dt
(ψx, ϕxx) = (ψ′

x, ϕxx) + (ψx, ϕ
′
xx).

Integrating from 0 to t, we obtain:

∫ t

0

(ψx, ϕ
′
xx) dt = (ψx(t), ϕxx(t))− (ψ0

x, ϕ
0
xx)−

∫ t

0

(ψ′
x, ϕxx) ds.

�

Integrating (8.39)1 from 0 to t and observing Remark 8.1, we have

from (8.39)1

1

2

(
|ϕ′

x|2 + a|ϕxx|2 + |ϕx|2
)
=

1

2

(
|ϕ1

x|2 + a|ϕ0
xx|2 + |ϕ0

x|2
)
+

+

∫ t

0

(fx, ϕ
′
x) ds− (ψx(t), ϕxx(t)) + (ψ0

x, ϕ
0
xx) +

∫ t

0

(ψ′
x, ϕxx) ds.

(8.40)

By similar argument, from (8.39)2 we get:

1

2

(
|ψ′

x|2 + b|ψx|2
)
=

1

2

(
|ψ1

x|2 + b|ψ0
x|2

)
+

+

∫ T

0

(gx, ψ
′
x) ds+ (ϕx(t), ψxx(t))− (ϕ0

x, ψ
0
xx)−

∫ t

0

(ϕ′
x, ψxx) ds.

(8.41)
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where E0 = E(0) .
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In fact, multiply both sides of (8.21)1 by −ϕ′
xx and of (8.21)2 by −ψ′

xx and integrate

on ]0, 1[ . We obtain:

������
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xx)− (ψx, ϕ

′
xx) + (ϕ,−ϕ′

xx) = (f,−ϕ′
xx)

(ψ′′,−ψ′
xx)− b(ψxx,−ψ′

xx) + (ϕx,−ψ′
xx) = (g,−ψ′

xx)
(8.38)

Integrating by parts (8.38), we have:

�������

1

2

d

dt

(
|ϕ′

x|2 + a|ϕxx|2 + |ϕx|2
)
= (fx, ϕ

′
x)− (ψx, ϕ

′
xx)

1

2

d

dt

(
|ψ′

x|2 + b|ψxx|2
)
= (gx, ψ

′
x) + (ϕx, ψ

′
xx)

(8.39)

Remark 8.1 Note that

d

dt
(ψx, ϕxx) = (ψ′

x, ϕxx) + (ψx, ϕ
′
xx).

Integrating from 0 to t, we obtain:

∫ t

0

(ψx, ϕ
′
xx) dt = (ψx(t), ϕxx(t))− (ψ0

x, ϕ
0
xx)−

∫ t

0

(ψ′
x, ϕxx) ds.

�

Integrating (8.39)1 from 0 to t and observing Remark 8.1, we have

from (8.39)1

1

2

(
|ϕ′

x|2 + a|ϕxx|2 + |ϕx|2
)
=

1

2

(
|ϕ1

x|2 + a|ϕ0
xx|2 + |ϕ0

x|2
)
+

+

∫ t

0

(fx, ϕ
′
x) ds− (ψx(t), ϕxx(t)) + (ψ0

x, ϕ
0
xx) +

∫ t

0

(ψ′
x, ϕxx) ds.

(8.40)

By similar argument, from (8.39)2 we get:

1

2

(
|ψ′

x|2 + b|ψx|2
)
=

1

2

(
|ψ1

x|2 + b|ψ0
x|2

)
+

+

∫ T

0

(gx, ψ
′
x) ds+ (ϕx(t), ψxx(t))− (ϕ0

x, ψ
0
xx)−

∫ t

0

(ϕ′
x, ψxx) ds.

(8.41)
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Adding (8.40) and (8.41) we get:

1

2

[
|ϕ′

x|2 + a|ϕxx|2 + |ϕx|2 + |ψ′
x|2 + b|ψx|2

]
≤

≤ 1

2

(
|ϕ1

x|2 + a|ϕ0
xx|2 + |ϕ0

x|2 + |ψ1
x|2 + |ψ0

x|2
)
+

+

∫ t

0

|fx| |ϕ′
x| ds+

∫ t

0

|gx| |ψ′
x| ds+ |ψx| |ϕxx|+

+|ψ0
x| |ϕ0

xx|+ |ϕx| |ψxx|+ |ϕ0
x| |ψ0

xx|.

(8.42)

We define:

F (t) =
1

2

(
|ϕ′

x(t)|2 + a|ϕxx(t)|2 + |ψ′
x(t)|2 + b|ψx(t)|2 + |ϕx(t)|2

)
,

then we obtain from (8.42):

F (t) ≤ C
(
∥f∥L1(0,T ;H1

0 (0,1))
+ ∥g∥L1(0,T ;H1

0 (0,1))
+ F (0)

)
.

From this estimate we obtain the proof of the Theorem 8.3. �
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8.4 Energy inequalities

In this section we will prove that the energy defined by (8.34) associated to the systems

(8.6), (8.7) and (8.8), satisfies an inequality of the type:

C0E0 ≤ E(t) ≤ C1E0 for all 0 ≤ t ≤ T, (8.43)

where C0 , C1 are positive constants.

In fact, multiply (8.6)1 by ϕ′ and (8.6)2 by ψ′ and integrate on ]0, 1[ . Whence,

������
(ϕ′′, ϕ′)− a(ϕxx, ϕ

′) + (ψ, ϕx) + (ϕ, ϕ′) = 0

(ψ′′, ψ′)− b(ψxx, ψ
′) + (ϕx, ψ

′) = 0
(8.44)

From (8.44) it follows:

E ′(t) +
d

dt
(ψ, ϕx) = 0

and integrating we have:

E(t) + (ψ(t), ϕx(t)) = E0 + (ψ0, ϕ0
x).

We know that:

−1

2

(
|ψ0|2 + |ϕ0

x|2
)
≤ (ψ0, ϕ0

x),

therefore,

E0 −
1

2

(
|ψ0|2 + |ϕ0

x|2
)
≤ E0 + (ψ0, ϕ0

x). (8.45)

We have:

E0 −
1

2

(
|ψ0|2 + |ϕ0

x|2
)
≥ 1

2
|ϕ1|2 + 1

2
|ψ1|2 + 1

2
(a− 1)|ϕ0

x|2 +

+
b

2
|ψ0

x|2 −
1

2
|ψ0|2 + 1

2
|ϕ0|2.

By Poincaré inequality, we get:

∫ 1

0

|vx(s)|2 ds ≥ λ1

∫ 1

0

|v(s)|2 dx for all v ∈ H1
0 (0, 1).

λ1 = π2 the first eigenvalue of −v′′ = λv, v ∈ H1
0 (Ω). Then,

|ψ0|2 ≤ 1

λ1

|ψ0
x|2.

We obtain:
b

2
|ψ0

x|2 −
1

2
|ψ0|2 ≥ 1

2

(
b− 1

π2

)
|ψ0

x|2

with π2b > 1 by hypothesis of Theorem 8.1.
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x).

We know that:

−1

2

(
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x|2
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x),

therefore,

E0 −
1

2

(
|ψ0|2 + |ϕ0

x|2
)
≤ E0 + (ψ0, ϕ0

x). (8.45)

We have:

E0 −
1

2

(
|ψ0|2 + |ϕ0

x|2
)
≥ 1

2
|ϕ1|2 + 1

2
|ψ1|2 + 1

2
(a− 1)|ϕ0

x|2 +

+
b

2
|ψ0

x|2 −
1

2
|ψ0|2 + 1

2
|ϕ0|2.

By Poincaré inequality, we get:

∫ 1

0

|vx(s)|2 ds ≥ λ1

∫ 1

0

|v(s)|2 dx for all v ∈ H1
0 (0, 1).

λ1 = π2 the first eigenvalue of −v′′ = λv, v ∈ H1
0 (Ω). Then,

|ψ0|2 ≤ 1

λ1

|ψ0
x|2.

We obtain:
b

2
|ψ0

x|2 −
1

2
|ψ0|2 ≥ 1

2

(
b− 1

π2

)
|ψ0

x|2

with π2b > 1 by hypothesis of Theorem 8.1.
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Therefore, we modify (8.45) obtaining:

E0 + (ϕ0, ψ0
x) ≥ E0 − 1

2

(
|ψ0|2 + |ϕ0

x|2
)
≥

≥ 1
2
|ϕ1|2 + 1

2
|ψ1|2 + 1

2
(a− 1)|ϕ0

x|2 + 1
2

(
b− 1

π2

)
|ψ0

x|2 + |ϕ0
x|2.

(8.46)

From (8.45) and (8.46) we get:

E(t) + (ψ, ϕ)x) ≥ 1

2
|ϕ1|2 + 1

2
|ψ1|2 + 1

2
(a− 1)|ϕ0

x|2+

+
1

2

(
b− 1

π2

)
|ψ0

x|2 +
1

2
|ϕ0

x|2.

From this inequality we obtain:

C0E0 ≤ E(t) on 0 ≤ t ≤ T. (8.47)

Let us now prove the second member of (8.43). For this, we have:

E(t) + (ψ, ϕx) = E0 + (ψ0, ϕ0
x) ≤ C E0 .

Since

−1

2

(
|ψx|2 + |ϕ|2

)
≤ −(ψx, ϕ) = (ψ, ϕx),

we obtain,

E(t)− 1

2

(
|ψx|2 + |ϕ|2

)
≤ E(t) + (ψ, ϕx) ≤ C E0 .

To modify the right hand side of the last inequality, we use Poincaré inequality for |ϕ| and
obtain:

E(t)− 1

2
|ψx|2 −

1

2λ1

|ϕx|2 ≥
1

2
|ϕ′|2 + 1

2
|ψ′|2+

+
1

2

(
a− 1

λ1

)
|ϕx|2 +

1

2
(b− 1)|ψx|2 ≥ min

(
a− 1

λ1

, b− 1, 1

)
E(t).

Then E(t) ≤ C1E0 on 0 ≤ t ≤ T . �

8.5 Direct and Inverse Inequalities

The key point in the proof of Theorem 8.1 was the double inequality (8.16). The right

side of (8.16) is called direct inequality and the left one inverse inequality.
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8.5.1 Direct Inequality

Let us consider the system (8.6) with f , g in the right hand side of (8.6)1 and (8.6)2 ,

respectively, instead of zero. We shall prove first a basic identity, cf. Chapter 3. We need

only f, g ∈ L2(0, T ;L2(0, 1)).

Lemma 8.1 If {ϕ, ψ} is an weak solution of (8.6), (8.7) and (8.8) with right hand side

f and g, then we have the identity:

1

2

∫ T

0

(aϕ2
x(0, t) + bψ2

x(0, t)) dt =

= − [(ϕ′(x, t), (1− x)ϕx(x, t)) + (ψ′(x, t), (1− x)ψx(x, t))]
T
0 +

+

∫

Q

(
|ϕ′|2 + |ψ′|2 + a|ϕx|2 + b|ψx|2

)
dxdt−

−1

2

∫

Q

|ϕ|2 dxdt+
∫

Q

f(1− x)ϕx dxdt+

∫

Q

g(1− x)ψx dxdt.

(8.48)

Proof: The proof is done for the case ϕ0, ψ0 ∈ H1
0 (0, 1) ∩ H2(0, 1); ϕ1, ψ1 ∈ H1

0 (0, 1)

and f, g ∈ W 1,1(0, T ;H1
0 (0, 1)). Multiply (8.20)1 by (1 − x)ϕx , (8.20)2 by (1 − x)ψx and

integrating on Q, we obtain:
∫

Q

ϕ′′ · (1− x)ϕx dxdt− a

∫

Q

ϕxx · (1− x)ϕx dxdt−

−
∫

Q

ψx · (1− x)ϕx dxdt+

∫

Q

ϕ · (1− x)ϕx dxdt =∫

Q

f · (1− x)ϕx dxdt

(8.49)

∫

Q

ψ′′ · (1− x)ψx dxdt− b

∫

Q

ψxx · (1− x)ψx dxdt+

+

∫

Q

ϕx · (1− x)ψx dxdt =

∫

Q

g · (1− x)ψx dxdt
(8.50)

Let us calculate (8.49) term by term

∫

Q

ϕ′′ · (1− x)ϕx dxdt =

∫ T

0

(ϕ′′, (1− x)ϕx) dt =

= (ϕ′, (1− x)ϕx)
��T
0
−
∫ T

0

(ϕ′, (1− x)ϕ′
x) dt.

The integral at the right hand side becomes:

∫ T

0

∫ 1

0

(1− x)ϕ′ϕ′
x dxdt =

1

2

∫ T

0

∫ 1

0

(1− x)
∂

∂x
|ϕ′|2 dxdt by parts

=

=
1

2

∫ T

0

{
(1− x)|ϕ′|2

��1
0
−

∫ 1

0

|ϕ′|2 dx
}
dt = −1

2

∫

Q

|ϕ′|2 dxdt.
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∫

Q

ψ′′ · (1− x)ψx dxdt− b

∫

Q

ψxx · (1− x)ψx dxdt+

+

∫

Q

ϕx · (1− x)ψx dxdt =

∫

Q

g · (1− x)ψx dxdt
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Let us calculate (8.49) term by term

∫

Q

ϕ′′ · (1− x)ϕx dxdt =

∫ T

0

(ϕ′′, (1− x)ϕx) dt =

= (ϕ′, (1− x)ϕx)
��T
0
−
∫ T

0

(ϕ′, (1− x)ϕ′
x) dt.

The integral at the right hand side becomes:

∫ T

0

∫ 1

0

(1− x)ϕ′ϕ′
x dxdt =

1

2

∫ T

0

∫ 1

0

(1− x)
∂

∂x
|ϕ′|2 dxdt by parts

=

=
1

2

∫ T

0

{
(1− x)|ϕ′|2

��1
0
−
∫ 1

0

|ϕ′|2 dx
}
dt = −1

2

∫

Q

|ϕ′|2 dxdt.
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Note that (1− x)ϕ′(x, t)
��1
0
= −ϕ′(0, t) = 0. Then,

∫

Q

ϕ′′ · (1− x)ϕx dxdt = (ϕ′, (1− x)ϕx)
��T
0
− 1

2

∫

Q

ϕ′(x, t)2 dxdt. (8.51)

We obtain:

− a

∫

Q

ϕxx · (1− x)ϕx dxdt = −a

∫ T

0

∫ 1

0

(1− x)ϕxϕxx dxdt =

= −a

2

∫ T

0

∫ 1

0

(1− x)
∂

∂x
ϕ2
x dxdt

by parts
=

= −a

2

∫ T

0

{
(1− x)ϕ2

x

��1
0
+

∫ 1

0

ϕ2
x dx

}
dt =

=
1

2

∫ T

0

aϕ2
x(0, t) dt−

1

2

∫

Q

aϕ2
x dxdt.

Then,

−
∫

Q

aϕxx · (1− x)ϕx dxdt =
1

2

∫ T

0

aϕ2
x(0, t) dt−

1

2

∫

Q

aϕ2
x dxdt. (8.52)

The next terms are:

−
∫

Q

ϕx · (1− x)ϕx dxdt = −
∫

Q

(1− x)ϕxϕx dxdt =

=

∫

Q

ϕ · (1− x)ϕx dxdt =
1

2

∫

Q

(1− x)
∂

∂x
ϕ2 dxdt =

=
1

2

∫ T

0

{
(1− x)ϕ2(x, t)

��1
0
+

∫ 1

0

ϕ2 dx

}
dt =

1

2

∫

Q

ϕ2 dxdt

(8.53)

because ϕ(0, t) = 0.

Then, ∫

Q

ϕ · (1− x)ϕx dxdt = −1

2

∫

Q

ϕ2 dxdt. (8.54)

From (8.51) to (8.54) we obtain, by addition:

1

2

∫ T

0

aϕ2
x(0, t) dt = −(ϕ′, (1− x)ϕx)

��T
0
+

+
1

2

∫

Q

ϕ′2 dxdt+
1

2

∫

Q

aϕ2
x dxdt+

∫

Q

(1− x)ψxϕx dxdt−

−1

2

∫

Q

ϕ2 dxdt+

∫

Q

f · (1− x)ϕx dxdt.

(8.55)

�
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Let us now calculate (8.50). We obtain, by the same method used for (8.49):

1

2

∫ T

0

ψ2
x(0, t) dt = −(ψ′, (1− x)ψx)

��T
0
+

+
1

2

∫

Q

ψ′2 dxdt+
1

2

∫

Q

bψ2
x dxdt−

−
∫

Q

(1− x)ψxϕx dxdt+

∫

Q

g · (1− x)ψx dxdt.

(8.56)

Finally, if we add (8.55) and (8.56) we obtain:

1

2

∫ T

0

(aϕ2
x(0, t) + bψ2

x(0, t)) dt =

=− {(ϕ′, (1− x)ϕx) + (ψ′, (1− x)ψx)}
��T
0
+

+
1

2

∫

Q

(|ϕ′|2 + |ψ′|2 + a|ϕx|2 + b|ψx|2) dxdt−

−1

2

∫

Q

ϕ2 dxdt+

∫

Q

f · (1− x)ϕx dxdt+

∫

Q

g · (1− x)ψx dxdt.

�
Now, using the identity (8.48) of Lemma 8.1, we are able to prove the direct inequality.

By limits, the identity is true for weak solution. Note that:

|(ϕ′, (1− x)ϕx)
��T
0
≤ 2 sup

0≤t≤T
|(ϕ′(x, t), (1− x)ϕx(x, t)| ≤

≤ 2 sup
0≤t≤T

{
1

2

∫ 1

0

ϕ′2(x, t) dx+
1

2

∫ 1

0

ϕ2
x(x, t) dx

}
≤ C0 E0 .

�
To prove the direct inequality, let us consider (8.48) with f = g = 0, that is, {ϕ, ψ} is

a solution of (8.6), (8.7) and (8.8). If we consider the inequality C0E0 ≤ E(t) ≤ C1E0 and

Poincaré inequality, it follows from (8.48) that:
∫ T

0

(aϕ2
x(0, t) + bψ2

x(0, t)) dt ≤ C
��{ϕ0, ϕ1, ψ0, ψ1}

��2

(H1
0 (0,1)×L2(0,1))2

.

�

8.5.2 Inverse Inequality

We will prove the inverse inequality following the method of Zuazua [71]. In fact, let us

consider the functional:

F (x) =
1

2

∫ T−αx

αx

(ϕ′(x, t)2 + aϕx(x, t)
2 + ϕ(x, t)2) dt+

+
1

2

∫ T−αx

αx

(ψ′(x, t)2 + bψx(x, t)
2) dt,

(8.57)
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��2

(H1
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�
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F (x) =
1

2
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1

2
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(8.57)
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defined on 0 ≤ x ≤ 1. When x = 0 we have:

F (0) =
1

2

∫ T

0

(
aϕx(0, t)

2 + bψx(0, t)
2
)
dt. (8.58)

which is the second hand side of the inverse inequality. Note that α = max

(
1√
a
,
1√
b

)
·

Represent F (x) = G(x) +H(x) given by (8.57). Taking the derivative of F (x) we have:

G′(x) =

∫ T−αx

αx

(ϕ′ϕ′
x + aϕxϕxx + ϕϕx) dt−

−α

2

∑
t=T−αx
t=αx

(
ϕ′(x, t)2 + aϕx(x, t)

2 + ϕ(x, t)2
)
.

(8.59)

Integrating by parts:

∫ T−αx

αx

ϕ′ϕ′
x dt = ϕ′ϕx

��T−αx

αx
−
∫ T−αx

αx

ϕ′′ϕx dt. (8.60)

Multiply both sides of (8.6) by ϕx and integrate on (αx, T −αx) with respect to t. We get

∫ T−αx

αx

ϕ′′ϕx dt−
∫ T−αx

αx

aϕxxϕx dt−

−
∫ T−αx

αx

ψxϕx dt+

∫ T−αx

αx

ϕϕx dt = 0.

(8.61)

Substituting (8.57) in (8.60) we get:

ϕ′ϕx

��T−αx

αx
−
∫ T−αx

αx

ϕ′ϕ′
x dt−

∫ T−αx

αx

aϕxxϕx dt−

−
∫ T−αx

αx

ψxϕx dt+

∫ T−αx

αx

ϕϕx dt = 0.

(8.62)

Adding (8.59) and (8.62) we have:

G′(x) = ϕ′ϕx

��T−αx

αx
−
∫ T−αx

αx

ψxϕx dt+ 2

∫ T−αx

αx

ϕϕx dt−

−α

2

∑
t=T−αx
t=αx

(
ϕ′(x, t)2 + aϕx(x, t)

2 + ϕ2(x, t)
)
.

(8.63)

The first term on the right hand side of (8.63) can be dominated as follows:

ϕ′ϕx ≤ β

2
ϕ′2 +

1

2β
ϕ2
x =

β

2
ϕ′2 +

1

2βa
aϕ2

x .

Taking β =
1√
a
we get:

ϕ′ϕx ≤ 1√
a

(
1

2
ϕ′2 +

1

2
aϕ2

x

)
.
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We know, by hypothesis of Theorem 8.1, that
1√
a
≤ α, then

ϕ′ϕx ≤ α

2

(
ϕ′(x, t)2 + aϕx(x, t)

2
)
,

whence,

ϕ′ϕx

��T−αx

αx
≤ α

2

∑
t=T−αx
t=αx

(
ϕ′(x, t)2 + aϕx(x, t)

2 + ϕ(x, t)2 (8.64)

From (8.63) and (8.64) we obtain:

G′(x) ≤ −
∫ T−αx

αx

ψxϕx dt+ 2

∫ T−αx

αx

ϕϕx dt. (8.65)

The derivative of H(x) with respect to x is

H ′(x) =

∫ T−αx

αx

(ψ′ψ′
x + bψxψxx) dt−

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.66)

By the same argument used in the analysis of G′(x) we obtain from (8.66):

H ′(x) = ψ′ψx

��T−αx

αx
+

∫ T−αx

αx

ϕxψx dt−
α

2

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.67)

We also obtain:

ψ′ψx

��T−αx

αx
≤ α

2

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.68)

From (8.67) and (8.68) we obtain:

H ′(x) ≤
∫ T−αx

αx

ϕxψx dt. (8.69)

Adding (8.65) and (8.69) we get:

F ′(x) ≤ 2

∫ T−αx

αx

ϕϕx dt; (8.70)

Since

ϕϕx ≤ max

{
1,

1

a

}(
1

2
ϕ(x, t)2 +

1

2
aϕx(x, t)

2

)
,

we modify (8.70) to obtain:

F ′(x) ≤ C F (x). (8.71)

Integrating (8.71) we have:

F (x) ≤ ec F (0)

96



82 Exact Controllability for Timoshenko System

We know, by hypothesis of Theorem 8.1, that
1√
a
≤ α, then

ϕ′ϕx ≤ α

2

(
ϕ′(x, t)2 + aϕx(x, t)

2
)
,

whence,

ϕ′ϕx

��T−αx

αx
≤ α

2

∑
t=T−αx
t=αx

(
ϕ′(x, t)2 + aϕx(x, t)

2 + ϕ(x, t)2 (8.64)

From (8.63) and (8.64) we obtain:

G′(x) ≤ −
∫ T−αx

αx

ψxϕx dt+ 2

∫ T−αx

αx

ϕϕx dt. (8.65)

The derivative of H(x) with respect to x is

H ′(x) =

∫ T−αx

αx

(ψ′ψ′
x + bψxψxx) dt−

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.66)

By the same argument used in the analysis of G′(x) we obtain from (8.66):

H ′(x) = ψ′ψx

��T−αx

αx
+

∫ T−αx

αx

ϕxψx dt−
α

2

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.67)

We also obtain:

ψ′ψx

��T−αx

αx
≤ α

2

∑
t=T−αx
t=αx

(
ψ′(x, t)2 + bψx(x, t)

2
)
. (8.68)

From (8.67) and (8.68) we obtain:

H ′(x) ≤
∫ T−αx

αx

ϕxψx dt. (8.69)

Adding (8.65) and (8.69) we get:

F ′(x) ≤ 2

∫ T−αx

αx

ϕϕx dt; (8.70)

Since

ϕϕx ≤ max

{
1,

1

a

}(
1

2
ϕ(x, t)2 +

1

2
aϕx(x, t)

2

)
,

we modify (8.70) to obtain:

F ′(x) ≤ C F (x). (8.71)

Integrating (8.71) we have:

F (x) ≤ ec F (0)

8.6. Non Homogeneous Mixed Problem for the
Timoshenko System. Ultra Weak Solutions. 83

or ∫ 1

0

F (x) dx ≤ ec F (0).

Since T > 2α, we obtain:

(T − 2α)E0 =

∫ T−αx

αx

E0 dt ≤ C1

∫ T−α

α

E(t) dt =

= C1

∫ T−α

α

∫ 1

0

(
1

2
ϕ′2 +

1

2
aϕ2

x +
1

2
ϕ2

)
dxdt+

+ C1

∫ T−α

α

∫ 1

0

(
1

2
ψ′2 +

1

2
bψ2

x

)
dxdt.

Since 0 ≤ x ≤ 1, we obtain:

(T − 2α)E0 ≤ C1

∫ T−αx

αx

∫ 1

0

(
1

2
ϕ′2 +

1

2
aϕ2

x +
1

2
ϕ2

)
dxdt+

+ C1

∫ T−αx

αx

∫ 1

0

(
1

2
ψ′2 +

1

2
bψ2

x

)
dxdt = C1

∫ 1

0

F (x) dx ≤ C2 F (0).

Then for T < 2α we obtain the inverse inequality and consequently the proof of Theorem

8.1. �

8.6 Non Homogeneous Mixed Problem for the

Timoshenko System. Ultra Weak Solutions.

We consider, now, the non homogeneous mixed problem:
������
y′′ − ayxx − zx + y = 0 in Q,

z′′ − bzxx + yx = 0 in Q,
(8.72)

������
y(0, T ) = v(t), y(1, t) = 0 in ]0, T [ ,

z(0, T ) = w(t), z(1, t) = 0 in ]0, T [ .
(8.73)

������
y(x, 0) = y0(x), y′(x, 0) = y1(x) in ]0, T [ ,

z(x, 0) = z0(x), z′(x, 0) = z1(x) in ]0, T [ .
(8.74)

We want to study this problem when we suppose v(t), w(t) in L2(0, T ). In order to

obtain the definition of solution for the above mixed problem, we follows an heuristic

procedure. Multiply both sides of (8.72)1 by ϕ and of (8.72)2 by ψ and integrate on Q.

Here {ϕ, ψ} is the solution of:
������
ϕ′′ − aϕxx − ψx + ϕ = f in Q,

ψ′′ − bψxx + ϕx = g in Q.
(8.75)
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������
ϕ(0, t) = 0, ϕ(1, t) = 0 in ]0, T [ ,

ψ(0, t) = 0, ψ(1, t) = 0 in ]0, T [ ,
(8.76)

������
ϕ(x, T ) = 0, ϕ′(x, T ) = 0 in ]0, T [ ,

ψ(x, T ) = 0, ψ′(x, T ) = 0 in ]0, T [ .
(8.77)

We know, that the solution {ϕ, ψ} belongs to the class

ϕ, ψ ∈ C0
(
[0, T ];H1

0 (0, 1)
)
∩ C1

(
[0, T ].L2(0, 1)

)
,

where f, g ∈ L1(0, T ;L2(0, 1)).

After the integration on Q, we obtain:

−(y1, ϕ(0)) + (y0, ϕ′(0))− (z1, ψ(0)) + (z0, ψ′(0))−

−
∫ T

0

av(t)ϕx(0, t) dt−
∫ T

0

bw(t)ϕx(0, t) dt+

+

∫ T

0

∫ 1

0

(yf + zg) dxdt = 0.

(8.78)

Note that ϕ(0), ψ(0) ∈ H1
0 (0, 1) and ϕ′(0), ψ′(0) ∈ L2(0, 1), therefore, if in (8.78) we

choose y0, z0 ∈ L2(0, 1) and y1, z1 ∈ H−1(0, 1), then make sense, in (8.78), ⟨y1, ϕ(0)⟩,
⟨z1, ψ(0)⟩, duality pairing between H−1(0, 1) and H1

0 (0, 1). Also make sense (y0, ϕ′(0)),

(z0, ψ′(0)) the inner product in L2(0, 1). Note that ϕx(0, t), ψx(0, t) belong to L2(0, 1), cf.

§4, inequalities.
Motivated by (8.78) we consider the map S defined on

(
L1(0, T ;L2(Ω))

)2
, with real

values, by:

⟨S, {f, g}⟩ = (y0, ϕ′(0))− ⟨y1, ϕ(0)⟩+ (z0, ψ′(0))− ⟨z1, ψ(0)⟩+

+

∫ T

0

av(t)ϕx(0, t) dt+

∫ T

0

bw(t)ψx(0, t) dt.
(8.79)

Whence

|⟨S, {f, g}⟩| ≤ |y0| |ϕ′(0)|+ ∥y1∥H−1(0,1) ||ϕ(0)||+
+|z0| |ψ′(0)|+ ∥z1∥H−1(0,1) ||ψ(0)||+
+a|v(t)| |ϕx(0, t)|+ b|w(t)| |ψx(0, t)|.

(8.80)

As a consequence of the Theorem 8.2 and the identity of Lemma 8.1, we obtain, from

(8.80):

|⟨S, {f, g}⟩| ≤ C
(
|y0|+ ∥y1∥H−1(0,1) + |z0|+ ∥z1∥H−1(0,1) +

+|ϕx(0, t)|+ |ψx(0, t)|
)
∥{f, g}∥(L1(0,T ;L2(0,1)))2 .

(8.81)
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Then (8.81) says that S defined by (8.79) on
(
L1(0, T ;L2(0, 1))

)2
is a continuous linear

form, that is, S is an object of
(
L∞(0, T ;L2(0, 1))

)2
dual of

(
L1(0, T ;L2(0, 1))

)2
. By

Riesz’s representation theorem, exists an object {y, z} of
(
L∞(0, T ;L2(0, 1))

)2
such that:

⟨S{f, g}⟩ =
∫ T

0

∫ 1

0

(yf + zg) dxdt. (8.82)

Definition 8.1 For {y0, y1}, {z0, z1} ∈ L2(0, 1) ×H−1(0, 1) and v, w ∈ L2(0, T ), we call

ultra weak solution or solution by transposition of the non homogeneous problem (8.72),

(8.73) and (8.74), the pair of functions {y, z} ∈
(
L∞(0, T ;L2(0, 1))

)2
such that satisfies:

∫ T

0

∫ 1

0

(yf + zg) dxdt = (y0, ϕ(0))− ⟨y1, ϕ(0)⟩+ (z0, ψ′(0))−

− ⟨z1, ψ(0)⟩+
∫ T

0

av(t)ϕx(0, t) dt+

∫ T

0

bw(t)ϕx(0, t) dt,

for all pair {f, g} ∈
(
L1(0, T ;L2(0, 1))

)2
and {ϕ, ψ} is solution of (8.75), (8.76) and

(8.77).

Exists only one ultra weak solution for the Timoshenko system and this solution {y, z}
satisfies:

∥{y, z}∥(L∞(0,T ;L2(0,1)))2 ≤
≤ C

(
|y0|+ ∥y1∥H−1(0,1) + |z0|+ ∥z1∥H−1(0,1) + |ϕx(0, t)|+ |ψx(0, t)|

)
.

(8.83)

In fact. the existence is a consequence of Riesz’s representation theorem, as we have

seen above. The estimate (8.83) is a consequence of (8.81). The uniqueness follows from

Du Bois Raymond’s Lemma.

�
We can also prove using the same method as in Chapter 4 and 5 that the ultra weak

solution {y, z} of (8.72), (8.73) and (8.74) satisfies the regularity condition:

y, z ∈ C0
(
[0, T ];L2(0, 1)

)
∩ C1

(
[0, T ];H−1(0, 1)

)
,

the initial data and the boundary conditions. �
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Chapter 9

HUM and the Wave Equation with

Variable Coefficients

9.1 Introduction.

Let Ω be a bounded domain Rn with boundary Γ and Q the finite cylinder Q = Ω×]0, T [

with lateral boundary Σ = Γ×]0, T [. We consider the following system:

�����������

u′′ −
n∑

i=1

∂

∂xi

(
aij(x, t)

∂u

∂xi

)
+

n∑
i=1

bi(x, t)
∂u′

∂xi

+
n∑

i=1

di(x, t)
∂u

∂xi

= 0 in Q,

u = v in Σ = Γ×]0, T [,

u(0) = u0, u′(0) = u1 in Ω

(*)

where u′ stands for ∂u
∂t

and u(0), u′(0) denote, respectively, the functions x �→ u(x, 0),

x �→ u′(x, 0). Here v is the control variable, that is, we act on the system (∗) through the

lateral boundary Σ.

The problem for exact controllability of system (∗) states as follows: Given T > 0

large enough, is it possible, for every initial data {u0, u1} lie in an appropriate space on Ω

to find a corresponding control v driving the system to rest at time T, i.e., such that the

solution u(x, t) of (∗) satisfies

u(T ) = 0, u′(T ) = 0?

1

1This part is a paper that was published for one of Authors in Asymptotic Analysis 11 (1995), pp.

317-341.
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System (∗) is motivated in the study of the boundary exact controllability for the

wave equations in Q̂, Q̂ a particular non-cylindrical domain. A particular system (∗)
appears when the wave equation û′′ −△û = 0 defined in Q̂ is transformed in a equation

defined in Q, as we shall see in the following chapter. Our objective is to show that this

is particular system is exact controllable. For that we use the Hilbert Uniqueness Method

(HUM) introduced by J. L. Lions [8] and [10]. This is possible because in this case we

have uniqueness, reversibility and smoothness of solutions.

Concerning to the exact controllability for system (∗) we note that the case aij =

δija(t), bi = di = 0 was studied by J.L. Lions [36] and the case aij = δija(x), bi = di = 0,

by E. Zuazua [69]. Also, R. Fuentes [16] analysed the situation bi = di = 0. Our approach

is different of this one and we note that the presence of the term ∂u′

∂xi
in (∗) gives hard

technical difficulties.

A number of authors have used the HUM in the study of exact controllability of

distributed system among of them we can mention J.P.Puel [17], J.P.Puel and E. Zuazua

[58], C. Fabre [11], C. Fabre and J.P.Puel [12], E. Zuazua [68], [69], V. Komornik [26] and

L.A. Medeiros [47].

This chapter is organized as follows:

• Main result.

• The Homogeneous Problem.

• Inverse and Direct Inequality.

• Exact Controllability.

9.2 Main Result

Let us introduce some notations (cf. J.L. Lions [40]). Let x0 ∈ Rn, m(x) = x− x0 and

ν(x) the unit normal vector at x ∈ Γ, directed towards the exterior of Ω. Consider the sets

Γ(x0) = {x ∈ Γ;m(x) · ν(x) ≥ 0}, Γ∗(x
0) = Γ \ Γ(x0), Σ(x0) = Γ(x0)×]0, T [.

In the definition of Γ(x0), · denotes the scalar product in Rn. We consider:

R(x0) = sup
x∈Ω

|m(x)|, M = sup
x∈Ω

|x|

and λ1 the first eigenvalue of the spectral problem −△φ = λφ, φ ∈ H1
0 (Ω). Let k : [0,∞[→

[0,∞[ be a continuous function. All scalar functions considered in the problem will be

real-valued.
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[0,∞[ be a continuous function. All scalar functions considered in the problem will be

real-valued.
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We make the following assumptions:

Ω contains the origin of Rn; (H1)

(This hypothesis is introduced in order to facilitate the computations but it is not neces-

sary);

The boundary Γ of Ω is C2; (H2)

and concerning the function k,

k ∈ W 3,∞
loc (]0,∞[), (H3)

0 < k0 = inf
t≥0

k(t), sup
t≥0

k(t) = k1 < ∞, (H4)

sup
t≥0

|k′(t)| = τ <
1

M
, (H5)

l1 =

∫ ∞

0

|k′(t)|dt < ∞, l2 =

∫ ∞

0

|k′′(t)|dt < ∞ . (H6)

We consider the operator

��������

Lu = u′′ − ∂

∂xi

[
(δij − k′2xixj)k

−2 ∂u

∂xj

]
− 2k′k−1xi

∂u′

∂xi

+

+ [(1− n)k′
2 − k′′k]k−2xi

∂u

∂xi

(9.1)

where δij is the Kronecker delta.

Remark 9.1 Here and in what follows the summation convention of repeated indices is

adopted.

The formal adjoint L∗ of L is
�����������

L∗z = z′′ − ∂

∂xi

[
(δij − k′2xixj)k

−2 ∂z

∂xj

]
− 2k′k−1 ∂z

′

∂xi

−

− 2nk′k−1z′ + [(n+ 1)k′2 − k′′k]k−2xi
∂z

∂xi

+

+ [n(n+ 1)k′2 − nk′′k]k−2z

(9.2)

We want to act on only a part of the boundary Σ, more precisely, one considers the

following system: �����������

Lu = 0 in Q,

u =

{
v on Σ(x0),

0 on Σ \ Σ(x0),

u(0) = u0, u′(0) = u1 in Ω.

(9.3)
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Remark 9.2 In Remark 9.8 we will give a special time T0 depending on n, R(x0), λ1, the

function k and on the geometry of Ω.

Now we states the main result of the chapter.

Theorem 9.1 We assume that hypotheses (H1)-(H6) are satisfied. Let T > T0. Then for

every initial data {u0, u1} belonging to L2(Ω)×H−1(Ω), there exists a control v ∈ L2(Σ(x0))

such that the solution defined by transposition u of Problem (9.3) satisfies

u(T ) = 0, u′(T ) = 0.

Remark 9.3 By applying the same arguments used in the of the proof of Theorem 9.1

we obtain the exact controllability for system (∗) with bi = di = 0 and aij(x, t) in the

hypotheses of R. Fuentes, loc. cit, that is, the a′ijs are smooth, symmetric, uniformly

elliptic on Q,

sup
x∈Ω

∫ ∞

0

|a′ij(x, t)|dt < ∞

and there exists δ > 0 such that

aij(x, t)ξiξj −
1

2

∂

∂xl

aij(x, t)ml(x)ξiξj ≥ δaij(x, t)ξiξj

for all (x, t) ∈ Q and ξ ∈ Rn.

The proof of Theorem 9.1 will be done in the next three sections.

9.3 The Homogeneous Problem

Let us introduce some notations that it will be used in what follows. With (·, ·), | · | we
will denote the inner product and norm of L2(Ω) and with ∥ · ∥, the norm of H1

0 (Ω) given

by the Dirichlet form. The duality pairing between the space F and its dual F ′ will be

noted by ⟨·, ·⟩.
In this section we obtain the existence and the identity of energy of solutions of a mixed

problem the general operator of second order in t.

Ru = u′′ + A(t)u+ bi(x, t)
∂u′

∂xi

+ c(x, t)u′ + di(x, t)
∂u

∂xi

+ f(x, t)u (9.4)

where

A(t)u = − ∂u

∂xi

(
aij(x, t)

∂u

∂xi

)
(9.5)

The coefficients aij satisfy the following hypotheses:
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∫ ∞
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∂xl
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Let us introduce some notations that it will be used in what follows. With (·, ·), | · | we
will denote the inner product and norm of L2(Ω) and with ∥ · ∥, the norm of H1

0 (Ω) given

by the Dirichlet form. The duality pairing between the space F and its dual F ′ will be

noted by ⟨·, ·⟩.
In this section we obtain the existence and the identity of energy of solutions of a mixed

problem the general operator of second order in t.

Ru = u′′ + A(t)u+ bi(x, t)
∂u′

∂xi

+ c(x, t)u′ + di(x, t)
∂u

∂xi

+ f(x, t)u (9.4)

where

A(t)u = − ∂u

∂xi

(
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∂u

∂xi

)
(9.5)

The coefficients aij satisfy the following hypotheses:
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



aij are symmetric and uniformly coercive on Q;

aij ∈ C1(Q), a′′ij ∈ L∞(Q);

bi, c, di, f ∈ W 1,∞(0, T ;L∞(Ω));
∂bi
∂xi

∈ L∞(Q).

(9.6)

Let us consider the problem

��������

Ru = h in Q,

u = 0 in Σ,

u(0) = u0, u′(0) = u1 in Ω

(9.7)

with data {u0, u1, h} ∈ H1
0 (Ω) × L2(Ω) × L1(0, T ;L2(Ω)). A function u : Q → R will be

called a weak solution of Problem (9.7) if u belongs to the class

u ∈ L∞(0, T ;H1
0 (Ω)), u′ ∈ L∞(0, T ;L2(Ω)),

satisfies the equation
������������

−
∫ T

0

(u′, ξ′)dt+

∫ T

0

a(t, u, ξ)dt+

∫ T

0

⟨
bi
∂u′

∂xi

, ξ

⟩
dt+

+

∫ T

0

(Pu, ξ)dt =

∫ T

0

(h, ξ)dt, ∀ξ ∈ L∞(0, T ;H1
0 (Ω)),

ξ′ ∈ L2(0, T ;L2(Ω)), ξ(0) = ξ(T ) = 0,

(9.8)

and the initial conditions

u(0) = u0, u′(0) = u1.

Here,

⟨A(t)u, ξ⟩ = a(t, u, ξ) =

∫

Ω

aij(x, t)
∂u

∂xj

∂ξ

∂xi

dx (9.9)

and

Pu = cu′ + di
∂u

∂xi

+ fu. (9.10)

Theorem 9.2 Let

u0 ∈ H2(Ω) ∩H1
0 (Ω); u1 ∈ H1

0 (Ω);h, h
′ ∈ L1(0, T ;L2(Ω)).

Then there exists a unique weak solution u of Problem (9.7) in the class

u ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), u′ ∈ L∞(0, T ;H1

0 (Ω)), u′′ ∈ L∞(0, T ;L2(Ω)).

Theorem 9.2 is showed by applying the Galerkin method with two estimates and the

below remark.
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Remark 9.4 The Green’s formula gives

(i)

(
bi
∂ξ

∂xi

, ξ

)
= −1

2

(
∂bi
∂xi

ξ, ξ

)
, ξ ∈ H1

0 (Ω).

We have

(ii)

�����
a′(t, u, u′′) = d

d
a′(t, u, u′)− a′′(t, u, u′)− a′(t, u′, u′),

|a′(t, u(t), u′′(t))| ≤ C
η
∥u(t)∥2 + η∥u′(t)∥2

where η is an arbitrary positive constant. Theorem 9.2 permits to obtain the following

result:

Theorem 9.3 Let

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), h ∈ L1(0, T ;L2(Ω)).

Then

(i) There exists a unique weak solution u of Problem (9.7) belonging to the class

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).

(ii) The linear application

H1
0 (Ω)× L2(Ω)× L1(0, T ;L2(Ω)) �→ C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)),

{u0, u1, h} �→ u

is continuous, u obtained in (i).

(iii) The solution u found in (i) satisfies

1

2
|u′(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2
|u1|2 + 1

2
a(0, u0, u0) +

1

2

∫ t

0

a′(s, u, u)ds+

+

∫ t

0

(h, u′)ds+
1

2

∫ t

0

(
∂bi
∂xi

u′, u′
)
ds−

∫ t

0

(Pu, u′)ds,

where Pu was defined in (9.10).

Proof. Let (u0
µ), (u

1
µ), (hµ) be sequence of vectors ofH

2(Ω)∩H1
0 (Ω), H

1
0 (Ω) andW 1,1(0, T ;L2(Ω)),

respectively, such that

u0
µ → u0 in H1

0 (Ω), u1
µ → u1 in L2(Ω),

hµ → h in L1(0, T ;L2(Ω)).
(9.11)

Denote by uµ a solution obtained in Theorem 9.2 with data u0
µ, u

1
µ, hµ. Then we have

uµ ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).
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Remark 9.4 The Green’s formula gives

(i)

(
bi
∂ξ

∂xi

, ξ

)
= −1

2

(
∂bi
∂xi

ξ, ξ

)
, ξ ∈ H1

0 (Ω).

We have

(ii)

�����
a′(t, u, u′′) = d

d
a′(t, u, u′)− a′′(t, u, u′)− a′(t, u′, u′),

|a′(t, u(t), u′′(t))| ≤ C
η
∥u(t)∥2 + η∥u′(t)∥2

where η is an arbitrary positive constant. Theorem 9.2 permits to obtain the following

result:

Theorem 9.3 Let

u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), h ∈ L1(0, T ;L2(Ω)).

Then

(i) There exists a unique weak solution u of Problem (9.7) belonging to the class

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).

(ii) The linear application

H1
0 (Ω)× L2(Ω)× L1(0, T ;L2(Ω)) �→ C(0, T ;H1

0 (Ω)) ∩ C1(0, T ;L2(Ω)),

{u0, u1, h} �→ u

is continuous, u obtained in (i).

(iii) The solution u found in (i) satisfies

1

2
|u′(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2
|u1|2 + 1

2
a(0, u0, u0) +

1

2

∫ t

0

a′(s, u, u)ds+

+

∫ t

0

(h, u′)ds+
1

2

∫ t

0

(
∂bi
∂xi

u′, u′
)
ds−

∫ t

0

(Pu, u′)ds,

where Pu was defined in (9.10).

Proof. Let (u0
µ), (u

1
µ), (hµ) be sequence of vectors ofH

2(Ω)∩H1
0 (Ω), H

1
0 (Ω) andW 1,1(0, T ;L2(Ω)),

respectively, such that

u0
µ → u0 in H1

0 (Ω), u1
µ → u1 in L2(Ω),

hµ → h in L1(0, T ;L2(Ω)).
(9.11)

Denote by uµ a solution obtained in Theorem 9.2 with data u0
µ, u

1
µ, hµ. Then we have

uµ ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)).
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Developing (Ruµ, u
′
µ) = (h, u′

µ), using Remark 9.4, part (i) and

a(t, u, u′) =
1

2

d

dt
a(t, u, u)− 1

2
a′(t, u, u)

we obtain identity (iii) with uµ, more precisely,

Eµ(t) = Eµ(0) +
1

2

∫ t

0

a′(s, uµ, uµ)ds+

∫ t

0

(hµ, u
′
µ)ds+

+
1

2

∫ t

0

(
∂bi
∂xi

u′
µ, u

′
µ

)
ds−

∫ t

0

(Puµ, u
′
µ)ds,

(9.12)

where

Eµ(t) =
1

2
|u′

µ(t)|2 +
1

2
a(t, uµ(t), uµ(t)).

(We can also obtain identity (9.12), since uµ is regular, applying the energy identity of

Lions and Magenes [43], p. 298).

Using the smooth conditions (9.6) on the coefficients of R in (9.12), we get

Eµ(t) ≤ Eµ(0) +

∫ t

0

|hµ||u′
µ|ds+ C

∫ t

0

Eµ(s)ds

hence, by Gronwall inequality,

Eµ(t) ≤

[
Eµ(0) +

(∫ T

0

|hµ|dt
)2

]
eCT (9.13)

where C is a constant independent of µ and t ∈ [0, T ].

Clearly, if we repeat the arguments used in the notation of (9.13) with uµ−uσ instead

of uµ, we obtain

|u′
µ(t)− u′

σ(t)|2 + a(t, uµ(t)− uσ)(t), uµ(t)− uσ(t)) ≤

≤ 2

[
|u1

µ − u1
σ|2 + a(0, u0

µ − u0
σ, u

0
µ − u0

σ) +

(∫ T

0

|hµ − hσ|dt
)2

]
eCT

(9.14)

Taking the limit in this expression and considering the convergences (9.11), we find a

function u such that
uµ → u in C([0, T ];H1

0 (Ω));

u′
µ → u′ in C([0, T ];L2(Ω)).

(9.15)

These convergences are sufficient to complete the proof of theorem, except uniqueness. In

fact, if we take the limit in (9.8),(writing with uµ instead of u,) in (9.11) and using (9.12),

we obtain (i), (ii), (iii) of the theorem. The uniqueness is proved by using a method due

to M.I. Visik and O.A. Ladyzhenskaja [19] (see also [12]).

�
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Next we consider a problem that will be used in the study of regularity for the solution

u of Problem (∗) of the Introduction. This is,

��������

Ru = h′ in Q,

u = 0 in Σ,

u(0) = 0, u′(0) = 0 in Ω.

(9.16)

The weak solution u of this problem has the regularity (i) of Theorem 9.2 if h′ ∈ L1(0, T ;L2(Ω)).

We have the following estimate:

Theorem 9.4 Let

h ∈ L2(0, T ;H1
0 (Ω)), h′ ∈ L2(0, T ;L2(Ω)), h(0) = 0.

Then the solution u of Problem (9.16) satisfies

∥u(t)∥+ |u′(t)− h(t)| ≤ C

∫ T

0

∥h∥dt, ∀t ∈ [0, T ], (9.17)

where C is a constant independent of u and h.

Proof: Theorem 9.3 gives

1

2
|u′(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2

∫ t

0

a′(t, u, u)ds+

∫ t

0

(h′, u′)ds+

+
1

2

∫ t

0

(
∂bi
∂xi

u′, u′
)
ds−

∫ t

0

(Pu, u′)ds

(9.18)

where Pu was defined in (9.10).

By integration by parts on [0, t] and noting that h(0) = 0, we have

∫ t

0

(h′, u′)ds = (h(t), u′(t))−
∫ t

0

(h, u′′)ds

hence ∫ t

0

(h′, u′)ds = (h(t), u′(t))− 1

2
|h(t)|2 +

∫ t

0

(h,Au)ds+

+

∫ t

0

(
h, bi

∂u′

∂xi

)
ds+

∫ t

0

(h, Pu)ds

(9.19)

because

u′′ = h′ − Au− bi
∂u′

∂xi

− Pu.

Combining (9.18) and (9.19), and noting that

∫ t

0

(
h, bi

∂u′

∂xi

)
ds = −

∫ t

0

(
h,

∂bi
∂xi

u′
)
ds−

∫ t

0

(
∂h

∂xi

, biu
′
)
ds
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Next we consider a problem that will be used in the study of regularity for the solution

u of Problem (∗) of the Introduction. This is,

��������
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(9.16)

The weak solution u of this problem has the regularity (i) of Theorem 9.2 if h′ ∈ L1(0, T ;L2(Ω)).

We have the following estimate:

Theorem 9.4 Let

h ∈ L2(0, T ;H1
0 (Ω)), h′ ∈ L2(0, T ;L2(Ω)), h(0) = 0.

Then the solution u of Problem (9.16) satisfies

∥u(t)∥+ |u′(t)− h(t)| ≤ C

∫ T

0

∥h∥dt, ∀t ∈ [0, T ], (9.17)

where C is a constant independent of u and h.

Proof: Theorem 9.3 gives

1

2
|u′(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2

∫ t

0

a′(t, u, u)ds+

∫ t

0

(h′, u′)ds+

+
1

2

∫ t

0

(
∂bi
∂xi

u′, u′
)
ds−

∫ t

0

(Pu, u′)ds

(9.18)

where Pu was defined in (9.10).

By integration by parts on [0, t] and noting that h(0) = 0, we have

∫ t

0

(h′, u′)ds = (h(t), u′(t))−
∫ t

0

(h, u′′)ds

hence ∫ t

0

(h′, u′)ds = (h(t), u′(t))− 1

2
|h(t)|2 +

∫ t

0

(h,Au)ds+

+

∫ t

0

(
h, bi

∂u′

∂xi

)
ds+

∫ t

0

(h, Pu)ds

(9.19)

because

u′′ = h′ − Au− bi
∂u′

∂xi

− Pu.

Combining (9.18) and (9.19), and noting that

∫ t

0

(
h, bi

∂u′

∂xi

)
ds = −

∫ t

0

(
h,

∂bi
∂xi

u′
)
ds−

∫ t

0

(
∂h

∂xi

, biu
′
)
ds
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one has
1

2
|u′(t)− h(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2

∫ t

0

a′(s, u, u)ds+

+

∫ t

0

(
∂bi
∂xi

u′, u′
)
ds+

∫ t

0

(h,Au)ds−
∫ t

0

(
h,

∂bi
∂xi

u′
)
ds−

−
∫ t

0

(
∂h

∂xi

, biu
′
)
ds+

∫ t

0

(h, Pu)ds−
∫ t

0

(Pu, u′)ds.

(9.20)

Making θ = u′ − h in (9.20) and substituting u′ by θ + h in this equality, we obtain

after direct computations

1

2
|θ(t)|2 + 1

2
a(t, u(t), u(t)) =

1

2

∫ t

0

a′(s, u, u)ds+

+

∫ t

0

(h,Au)ds+
1

2

∫ t

0

(
∂bi
∂xi

θ, θ

)
ds−

∫ t

0

(
∂h

∂xi

, biθ

)
ds−

−
∫ t

0

(cθ, θ)ds−
∫ t

0

(ch, θ)ds−
∫ t

0

(
di

∂u

∂xi

, θ

)
ds+

∫ t

0

(fu, θ)ds.

(9.21)

Bound each term on the right side of (9.21) and use the coerciveness of a(t, u, u). Then

the equality (9.21) becomes

1

2
|θ(t)|2 + 1

2
|u(t)|2 ≤ C

∫ t

0

∥h∥(∥u∥+ |θ|)ds+ C

∫ t

0

(∥u∥2 + |θ|2)ds

where C is a constant independent of u and h. The Gronwall lemma applied in this last

inequality gives the estimate (9.17).

�

Remark 9.5 Let

ãij(x, t) = aij(x, T − t), Ã(t) = A(T − t)

b̃i(x, t) = −bi(x, T − t), c̃(x, t) = −c(x, T − t)

d̃i(x, t) = di(x, T − t), f̃(x, t) = f(x, T − t), h̃(x, t) = h(x, T − t)

(9.22)

and

ũ(x, t) = u(x, T − t),

R̃ũ = ũ′′ + Ãũ+ b̃i
∂ũ′

∂xi

+ c̃ũ′ + d̃i
∂ũ

∂xi

+ f̃ ũ.
(9.23)

Clearly if aij, bi, c, di, f satisfy the hypotheses (9.6) then ãij, b̃i, c̃, d̃i, f̃ satisfy the same

hypotheses and reciprocally.

We introduce the problem
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��������

R̃ũ = h̃ in Q,

ũ = 0 in Σ,

ũ(T ) = u0, ũ′(0) = −u1 in Ω

(9.24)

and define in similar manner as in Problem (9.7) a weak solution ũ of this problem. A

direct computation shows that u is a weak solution of Problem (9.7) if and only if ũ is a

weak solution of Problem (9.24), u and ũ related by (9.23). Thus we can prove a Theorem

9.3’ and a Theorem 9.4’ for the weak solution ũ of (9.24) analogous to Theorem 9.3 and

Theorem 9.4.

�

9.4 Inverse and Direct Inequality

The objective of this section it to obtain estimates for ∂u
∂ν
, u the weak solution of the

problem ��������

L∗u = h in Q,

u = 0 in Σ,

u(0) = u0, u′(0) = u1 in Ω

(9.25)

where L∗ the operator introduced in (9.2).

In the sequel of the section we will work with the operators L∗ and L. We observe that,

since the coefficients of L∗ satisfy the condition (9.6), all the results of Section 9.3 remain

true when one changes the operator R by L∗.

With the notations

aij = (δij − k′2xixj)k
−2, bi = −2k′k−1xi (9.26)

and after some computations, the operator L∗ assumes the form

L∗u = u′′ − ∂

∂xi

(
aij

∂u

∂xj

)
+

1

2

∂

∂xi

(biu
′)+

+
1

2

∂

∂xi

(biu)
′ +

∂

∂xi

(nk′2k−2xiu).

(9.27)

One has

a0ξiξj ≤ aijξiξj ≤ a1ξiξj, ∀{x, t}, ∀ξ ∈ Rn, (a0 > 0). (9.28)

The energy of system (9.25) is

E(t) =
1

2
|u′(t)|2 + 1

2
a(t, u(t), u(t)) (9.29)
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1

2
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∂xi
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∂xi
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in particular

E0 = E(0) =
1

2
|u1|2 + 1

2
a(0, u0, u0).

Theorem 9.5 Let u be the weak solution of Problem (9.25). Then

(i) if h = 0,

E0e
−C0 ≤ E(t) ≤ E0e

C0 , ∀t ∈ [0,∞),

(ii) if h ̸= 0,

E(t) ≤

[
2E0 +

(∫ T

0

|h|dt
)2

]
eC0 , ∀t ∈ [0, T ],

where

C0 = 2(1 + τk1M
2 + τ 2M2 + na0k

2
1)(a0k

3
0)

−1(l1 + l2)+

+ 2(λ
1
2
1M + n)(nτ + τ + k1)(a

1
2
0 k

2
0λ

1
2
1 )

−1(l1 + l2)

(see notations of Section 9.3 and 9.29).

Proof. We will prove the part (i). The second part will be obtained with the same

arguments. Differentiating with respect to t the identity (iii) of Theorem 9.3, we find

E ′(t) =
1

2
a′(t, u, u) +

1

2

(
∂bi
∂xi

u′, u′
)
− (Pu, u′)

or

E ′(t) = −k′k−3

(
∂u

∂xi

,
∂u

∂xi

)
− (k′k′′k − k′3)k−3

����xi
∂u

∂xi

����
2

+

+ nk′k−1|u′|2 −
(
di

∂u

∂xi

, u′
)
− (fu, u′).

(9.30)

Recalling that

di = [(n+ 1)k′2 − k′′k]k−2xi, f = [n(n+ 1)k′2 − nk′′k]k−2

(see (9.2)), it follows from (9.30)

|E ′(t)| ≤ G(t)E(t)

where

G = 2(|k′|+M2|k′k′′k − k′3|+ na0k
2|k′|)(a0k3)−1+

+ 2(λ
1
2
1M + n)|(n+ 1)k′2 − k′′k|(a

1
2
0 λ

1
2
1 k

2)−1.
(9.31)

or

−G(t)E(t) ≤ E′(t) ≤ G(t)E(t). (9.32)
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Using the Hypotheses (H3)-(H5), Section 9.2, on the function k we can bound each

term that define G and (9.31) gives

∫ ∞

0

G(t)dt ≤ C0. (9.33)

Combining (9.32) and (9.33) we conclude the proof of the theorem.

�
Next, one express an identity which will the fundamental to obtain estimates for ∂u

∂ν
.

Theorem 9.6 Leg q = (ql) be a vectorial field on Ω, q ∈ [C1(Ω)]n. Then every weak

solution u of Problem (9.25) verifies

1

2

∫ T

0

∫

Γ

aijνiνjqlνl

(
∂u

∂ν

)2

dΓdt =

=

(
u′ +

1

2

∂

∂xi

[biu], ql
∂u

∂xl

) ���
T

0
+

+
1

2

∫ T

0

∫

Ω

∂ql
∂xl

(
u′2 − aij

∂u

∂xj

∂u

∂xi

)
dxdt+

+ (n+ 1)

∫ T

0

∫

Ω

k′2

k2
xi

∂u

∂xi

ql
∂u

∂xl

dxdt+

+

∫ T

0

∫

Ω

aij
∂u

∂xj

∂ql
∂xi

∂u

∂xl

dxdt+
1

2

∫ T

0

∫

Ω

∂bi
∂xi

∂u

∂xl

qlu
′dxdt+

+
1

2

∫ T

0

∫

Ω

∂bi
∂xl

∂u

∂xi

qlu
′dxdt+

1

2

∫ T

0

∫

Ω

∂bi
∂xi

z
∂ql
∂xl

u′dxdt+

+
1

2

∫ T

0

∫

Ω

bi
∂u

∂xi

∂ql
∂xl

u′dxdt− 1

2

∫ T

0

∫

Ω

biu
′ ∂ql
∂xi

∂u

∂xl

dxdt−

− 1

2

∫ T

0

∫

Ω

n2k
′2

k2

∂ql
∂xl

u2dxdt−
∫ T

0

∫

Ω

hql
∂u

∂xl

dxdt

(9.34)

Remark 9.6 In order to facilitate the writing, we denote ∂
∂xi

by Di and the product of

the functions φ, ψ by φ · ψ.

Proof. First, one proves (9.34) for the solution u of Problem (9.25) with smooth data,

that is, u given by Theorem 9.2. Then, the general case will follow by taking the limit in

the identity with smooth solution. Thus u(t) ∈ H2(Ω)×H1
0 (Ω), u

′(t) ∈ H1
0 (Ω).

Multiply the equation (9.25)1 by qlDlu. On each term of the product L∗u · qlDlu one

uses the Green’s formula or integrates by parts in t. It gives: For the first term

∫ T

0

∫

Ω

u′′qlDludxdt = (u′, qlDlu)
���
T

0
+

1

2

∫ T

0

∫

Ω

(Dlql)u
′2dxdt (9.35)
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2
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)2
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=

(
u′ +

1

2

∂

∂xi

[biu], ql
∂u

∂xl

) ���
T

0
+

+
1

2

∫ T

0

∫

Ω

∂ql
∂xl

(
u′2 − aij

∂u

∂xj

∂u

∂xi

)
dxdt+

+ (n+ 1)

∫ T

0

∫

Ω

k′2

k2
xi

∂u

∂xi

ql
∂u

∂xl

dxdt+

+

∫ T

0

∫

Ω

aij
∂u

∂xj

∂ql
∂xi

∂u

∂xl

dxdt+
1

2

∫ T

0

∫

Ω

∂bi
∂xi

∂u

∂xl

qlu
′dxdt+

+
1

2

∫ T

0

∫

Ω

∂bi
∂xl

∂u

∂xi

qlu
′dxdt+

1

2

∫ T

0

∫

Ω

∂bi
∂xi

z
∂ql
∂xl

u′dxdt+

+
1

2

∫ T

0

∫

Ω

bi
∂u

∂xi

∂ql
∂xl

u′dxdt− 1

2

∫ T

0

∫

Ω

biu
′ ∂ql
∂xi

∂u

∂xl

dxdt−

− 1

2

∫ T

0

∫

Ω

n2k
′2

k2

∂ql
∂xl

u2dxdt−
∫ T

0

∫

Ω

hql
∂u

∂xl

dxdt

(9.34)

Remark 9.6 In order to facilitate the writing, we denote ∂
∂xi

by Di and the product of

the functions φ, ψ by φ · ψ.

Proof. First, one proves (9.34) for the solution u of Problem (9.25) with smooth data,

that is, u given by Theorem 9.2. Then, the general case will follow by taking the limit in

the identity with smooth solution. Thus u(t) ∈ H2(Ω)×H1
0 (Ω), u

′(t) ∈ H1
0 (Ω).

Multiply the equation (9.25)1 by qlDlu. On each term of the product L∗u · qlDlu one

uses the Green’s formula or integrates by parts in t. It gives: For the first term

∫ T

0

∫

Ω

u′′qlDludxdt = (u′, qlDlu)
���
T

0
+

1

2

∫ T

0

∫

Ω

(Dlql)u
′2dxdt (9.35)
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For the second term

− (Di[aijDju], qlDlu) = (aijDju,DiqlDlu)+

+ (aijDju, qlDiDlu)−
∫

Γ

aijDju · qlDlu · νidΓ.
(9.36)

Applying the operator Dl on aijDjz · qlDiz and noting that aij = aji, we deduce by using

the Green’s formula in the second integral on the right side of (9.36), that

2(aijDju, qlDiDlu) = −(Dlaij ·Dju · ql, Diu)−

− (aijDju ·Dlql, Diu) +

∫

Γ

aijDju · qlDiu · νldΓ.
(9.37)

One has that Diu = νi
∂u
∂ν

on Γ (see J.L. Lions [39]), therefore

1

2

∫

Γ

aijDju · qlDiu · νldΓ−
∫

Γ

aijDju · qlDlu · νidΓ−

− 1

2

∫

Γ

aijνiνjqlνl

(
∂u

∂ν

)2

dΓ.

(9.38)

A direct computation on aij gives

− 1

2
(Dlaij ·Djz · ql, Diz) =

(
k′2

k
xiDiu, qlDlu

)
(9.39)

Combining (9.35)-(9.37), we find the expression

− (Di[aijDju], qlDlu) = (aijDju,DiqlDlu)+

+

(
k′2

k2
xiDiu, qlDlu

)
− 1

2
(aijDju ·Dlql, Diz)−

− 1

2

∫

Γ

aijνiνjqlνl

(
∂u

∂ν

)2

dΓ

(9.40)

For the third term

1

2

∫ T

0

∫

Ω

Di(biu
′) · qlDludxdt = −1

2

∫ T

0

∫

Ω

biu
′Diql ·Dludxdt−

− 1

2

∫ T

0

∫

Ω

biu
′qlDiDludxdt.

(9.41)

For the fourth term

1

2

∫ T

0

∫

Ω

[Di(biu)]
′qlDludxdt =

1

2
(Di[biu], qlDlu)

���
T

0
−

− 1

2

∫ T

0

∫

Ω

Di(biu) · qlDlu
′dxdt,

(9.42)
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and

− 1

2
(Di(biu), qlDlu

′) =

=
1

2
([Dibi·qlDlu+Dlbi·qlDiu+ biqlDlDiu], u

′)+

+
1

2
([uDibi·Dlql + biDiu·Dlql], u

′).

(9.43)

(Note that DlDibi = 0.) From (9.42),(9.43) it follows that

− 1

2

∫ T

0

∫

Ω

[Di(biu))]
′qlDludxdt =

1

2
(Di[biu], qlDlu)

���
T

0
+

+
1

2

∫ T

0

∫

Ω

Dibi · qlDlu · u′dxdt+

+
1

2

∫ T

0

∫

Ω

Dlbi·qlDiu·u′dxdt+
1

2

∫ T

0

∫

Ω

bi · qlDlDiu·u′dxdt+

+
1

2

∫ T

0

∫

Ω

uDibi·Dlql·u′dxdt+
1

2

∫ T

0

∫

Ω

biDiu·Dlql·u′dxdt.

(9.44)

If we add (9.41) and (9.44), one observes that the integrals involving DlDiu are can-

celled out.

For the fifth term

∫ T

0

∫

Ω

Di

(
n
k′2

k2
xiu

)
·qlDludxdt = −1

2

∫ T

0

∫

Ω

n2k
′2

k2
u2Dlqldxdt+

+

∫ T

0

∫

Ω

n
k′2

k2
xiDiu·qlDludxdt.

(9.45)

Add (9.35), (9.40), (9.41), (9.44) and (9.45). As this addition is equals to
∫ T

0

∫
Ω
hqlDludxdt,

we obtain the identity (9.34).

�
Let us consider again the notation of Section 9.2. The next inequality that we derive

is named direct inequality for Problem (9.25).

Theorem 9.7 Let z any weak solution of Problem (9.25). Then ∂u
∂ν

∈ L2(Σ) and

∫ T

0

∫

Γ

(
∂u

∂ν

)2

dΓdt ≤ C(T + 1)

[
E0 +

(∫ T

0

|h|dt
)2

]
+ C0E

1
2
0

∫ T

0

|h|dt

where C is a constant independent of u and T.

Proof. Theorem 9.5, part (ii), furnishes the estimate

�������
|u′(t)|2 + a(t, u(t), u(t)) ≤ CE0 + C

(∫ T

0

|h|dt
)2

,

∀t ∈ [0, T ], (C = 4eC0).

(9.46)
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Γ
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∂u

∂ν

)2

dΓdt ≤ C(T + 1)

[
E0 +

(∫ T

0

|h|dt
)2

]
+ C0E

1
2
0

∫ T

0

|h|dt

where C is a constant independent of u and T.

Proof. Theorem 9.5, part (ii), furnishes the estimate

�������
|u′(t)|2 + a(t, u(t), u(t)) ≤ CE0 + C

(∫ T

0

|h|dt
)2

,

∀t ∈ [0, T ], (C = 4eC0).

(9.46)
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Consider the identity of the Theorem 9.6 with a vector field q such that q = ν on Γ. One

observes that, using the estimate (9.46), the integrals on Ω of (9.34) can be bounded by

C

[
E0 + C

(∫ T

0

|h|dt
)2

]
,

the integrals on Q by

C(T + 1)

[
E0 + C

(∫ T

0

|h|dt
)2

]
,

and the integral
∫ T

0

∫
Ω
hql

∂u
∂xl

dxdt by

CE
1
2
0

∫ T

0

|h|dt+ C

(∫ T

0

|h|dt
)2

On the other side

1

2

∫ T

0

∫

Γ

aijνiνjνlνl

(
∂u

∂ν

)2

dΓdt ≥ 1

2
a0

∫ T

0

∫

Γ

(
∂u

∂ν

)2

dΓdt.

The above boundedness give the theorem.

�

Remark 9.7 The Theorem 9.7 with E(T ) instead E0 is also true for the weak solution u

of the problem ��������

L∗u = h in Q,

u = 0 in Σ,

u(T ) = u0, u′(T ) = u1 in Ω.

For that we introduce the function k̃(t) = k(T − t). With the coefficients aij, bi, c, di, f of

L∗ we determine the coefficients ãij, b̃i, c̃, d̃i, f̃ given by (9.22) of Remark 9.5. We then

observe that the operator L̃∗ with coefficients ãij, b̃i, c̃, d̃i, f̃ and the operator L̃∗ have the

same form. The result then follows by applying Remark 9.5.

In order to show the inverse inequality one proves the following previous result:

Lemma 9.1 Let x0 ∈ Rn. Then every solution u of Problem (9.25) with h = 0 verifies�����������������������

1

2

∫ T

0

∫

Γ

aijνiνjνl(xl − x0
l )

(
∂u

∂ν

)2

dΓdt =

=

∫ T

0

E(t)dt+

(
u′ +

1

2

∂

∂xi

[biu], (xl − x0
l )

∂u

∂xl

+
n− 1

2
u

) ���
T

0
+

+ (n+ 1)

∫ T

0

∫

Ω

k′2

k2
xi

∂u

∂xi

(xl − x0
l )

∂u

∂xl

dxdt−

− (n+ 1)

∫ T

0

∫

Ω

k′

k

∂u

∂xl

(xl − x0
l )u

′
ldxdt+

+
(n+ 1)

4

∫ T

0

∫

Ω

∂bi
∂xi

uu′dxdt− (n+ 1)

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt.

(9.47)
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Proof. Consider the identity of Theorem 9.6 with the particular vector field q(x) = x−x0.

Using the same arguments and notations of the proof of Theorem 9.6 and making the

decompositions

• n

2

∫ T

0

∫

Ω

(u′2 − aijDjuDiu)dxdt+

∫ T

0

∫

Ω

aijDjuDiudxdt =

=
n− 1

2

∫ T

0

∫

Ω

(u′2 − aijDjuDiu)dxdt+

∫ T

0

E(t)dt,

• n

2

∫ T

0

∫

Ω

Dibi ·uu′dxdt =
n+ 1

4

∫ T

0

∫

Ω

Dibi·uu′dxdt+

+
n− 1

4

∫ T

0

∫

Ω

Dibi ·uu′dxdt,

• n

2

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt =

n+ 1

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt+

+
n− 1

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt

we obtain
��������������������������������

1

2

∫ T

0

∫

Γ

aijνiνjνlql

(
∂u

∂ν

)2

dΓdt =

(
u′ +

1

2
Di[biu], qlDlu

) ���
T

0
+

+

∫ T

0

E(t)dt+ (n+ 1)

∫ T

0

∫

Γ

k′2

k2
xiDiu·qlDludxdt+

− (n+ 1)

∫ T

0

∫

Ω

k′

k
Dlu·qlu′dxdt+

n+ 1

4

∫ T

0

∫

Ω

Dibi·uu′dxdt−

− (n+ 1)

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt+

+
n− 1

2

∫ T

0

∫

Ω

(u′2 − aijDjuDiu)dxdt+

+
(n− 1)

2

∫ T

0

∫

Ω

biDiu·u′dxdt+
(n− 1)

4

∫ T

0

∫

Ω

Dibi·uu′dxdt−

− (n− 1)

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt.

(9.48)

Multiply the equation L∗u = 0 by u and integrate on Q. Use the Green’s formula or the

integration by parts in t on each term of the product L∗u·u. This yields:

•
∫ T

0

∫

Ω

u′′udxdt = (u′, u)
��T
0
−

∫ T

0

∫

Ω

u′2dxdt,

•
∫ T

0

⟨A(t)u, u⟩dt =
∫ T

0

a(t, u, u)dt,
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Multiply the equation L∗u = 0 by u and integrate on Q. Use the Green’s formula or the

integration by parts in t on each term of the product L∗u·u. This yields:

•
∫ T

0

∫

Ω

u′′udxdt = (u′, u)
��T
0
−
∫ T

0

∫

Ω

u′2dxdt,
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0
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0
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• 1

2

∫ T

0

∫

Ω

Di[biu]
′ ·udxdt = 1

2
(Di[biu], u)

���
T

0
−

− 1

2

∫ T

0

∫

Ω

Dibi ·uu′dxdt− 1

2

∫ T

0

∫

Ω

biDiu ·u′dxdt,

• 1

2

∫ T

0

∫

Ω

Di[biu
′]·udxdt = −1

2

∫ T

0

∫

Ω

biu
′Diu,

•
∫ T

0

∫

Ω

Di

[
n
k′2

k2
xiu

]
·udxdt = 1

2

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt.

The addition on the last five equalities and the multiplication of the result by (n−1)
2

gives
������������������

(
u′ +

1

2
Di[biu],

n− 1

2
u

) ���
T

0
=

=
(n− 1)

2

∫ T

0

∫

Γ

(u′2 − aijDjuDiu)dxdt+

+
(n− 1)

4

∫ T

0

∫

Γ

Dibi·uu′dxdt+
(n− 1)

2

∫ T

0

∫

Γ

biDiu·u′dxdt−

− (n− 1)

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt.

(9.49)

Using (9.49) in the last four terms on the right side of (9.48), we obtain the lemma.

�
In order to state the inverse inequality for the Problem (9.25) we introduce some

notations. Theorem 9.5. part (i), says

C1E0 ≤ E(t) ≤ C2E0, ∀t ∈ [0,∞) (C1 = e−C0 , C2 = eC0) (9.50)

The time T0 is defined by

T0 = [2a
1
2
0R(x0) +K1 +K2 +K3]C2C

−1
1

(9.51)

where

K1 =
2τ [(n− 1)M + 2R(x0) + 2λ

1
2
1MR(x0)]

a0k0λ
1
2
1

K2 =
2l1(n+ 1)R(x0)[τM + a

1
2
0 k0]

a0k2
0

K3 =
l1n(n+ 1)[τM + a

1
2
0 k0]

a0k2
0λ

1
2
1

Remark 9.8 We observe that if the function k ≡ 1 then C1 = C2 = a0 = 1, K1 = K2 =

K3 = 0 that implies T0 = 2R(x0). This is the time T0 found in J.L. Lions [39] and in V.

Komornik [26] for the equation u′′ −△u = 0.
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Theorem 9.8 Let T > T0. Then every weak solution u of Problem (9.25) with h = 0,

verifies

1

2
R(x0)a1

∫ T

0

∫

Γ(x0)

(
∂u

∂ν

)2

dΓdt ≥ C1(T − T0)E0.

Proof The principal idea is to bound, using estimate (9.50), each integral on Q of the

identity of Lemma 9.1 by an expression of the form

CE0

∫ ∞

0

|k′|dt.

We start bounding the first terms of the above identity. We have, making the same

calculations as in [38] and [39],

����
(
u′, (xl − x0

l )Dlu+
n− 1

2
u

)���� ≤
µ

2
|u′|2 + 1

2µ
R2(x0)a−1

0 a(t, u, u).

Making µ = R(x0)

a
1
2
0

and using the estimate (9.50) in the above inequality, we get

����
(
u′, (xl − x0

l )Dlu+
n− 1

2
u

)���� ≤ R(x0)a
− 1

2
0 C2E0.

that implies (
u′, (xl − x0

l )Dlu+
n− 1

2
u

) ���
T

0
≥ −R(x0)a

− 1
2

0 C2E0. (9.52)

Applying the Green’s formula, we derive

(
Di[biu], (xl − x0

l )Dlu+
n− 1

2
u

)
=

n− 1

4
(u, biDiu)+

+
1

2

(
−2k′

k
u+ biDiu, [xl − x0

l ]Dlu

)

and direct computations gives

•
����
n− 1

4
(u, biDiu)

���� ≤ (n− 1)τMC2
E0

a0k0λ
1
2
1

,

•
����
1

2

(
−2k′

k
u+ biDiu, [xl − x0

l ]Dlu

)���� ≤ 2τR(x0)
(1 + λ

1
2
1M)C2E0

a0k0λ
1
2
1

that implies (
Di[biu], [xl − x0

l ]Dlu+
n− 1

2
u

) ���
T

0
≥

≥ −2τ [(n− 1)M + 2R(x0) + 2λ
1
2
1MR(x0)]

C2E0

a0k0λ
1
2
1

.
(9.53)
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2
u
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=
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4
(u, biDiu)+

+
1

2

(
−2k′

k
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and direct computations gives

•
����
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4
(u, biDiu)

���� ≤ (n− 1)τMC2
E0

a0k0λ
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2
1

,

•
����
1

2

(
−2k′

k
u+ biDiu, [xl − x0

l ]Dlu

)���� ≤ 2τR(x0)
(1 + λ

1
2
1M)C2E0

a0k0λ
1
2
1

that implies (
Di[biu], [xl − x0

l ]Dlu+
n− 1

2
u

) ���
T

0
≥

≥ −2τ [(n− 1)M + 2R(x0) + 2λ
1
2
1MR(x0)]

C2E0

a0k0λ
1
2
1

.
(9.53)
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The integrals on Q of the identity (9.47) have the following bounds, after use of the

estimate (9.50) and direct computation:

����(n+ 1)

∫ T

0

∫

Ω

k′2

k2
xiDiu·(xl − x0

l )Dludxdt

���� ≤

≤ 2l1(n+ 1)τMR(x0)
C2E0

a0k2
0

,

(9.54)

����(n+ 1)

∫ T

0

∫

Ω

k′

k
(xl − x0

l )Dlu·u′dxdt

���� ≤

≤ 2l1(n+ 1)R(x0)
C2E0

a
1
2
0 k0

,
(9.55)

����
(n+ 1)

4

∫ T

0

∫

Ω

Dibi ·uu′dxdt

���� ≤ l1n(n+ 1)
C2E0

a
1
2
0 k0λ

1
2
1

, (9.56)

����
(n+ 1)

4

∫ T

0

∫

Ω

n2k
′2

k2
u2dxdt

���� ≤ l1τn(n+ 1)M
C2E0

a0k2
0λ

1
2
1

. (9.57)

Thus, using the estimates (9.52)-(9.57) in the identity (9.47), we obtain

1

2

∫ T

0

∫

Γ

aijνiνjνl(xl − x0
l )

(
∂u

∂ν

)2

dΓdt ≥ C1(T − T0)E0. (9.58)

The left side of (9.58) can be bounded as in J.L. Lions [39] by

1

2
R(x0)a1

∫ T

0

∫

Γ(x0)

(
∂u

∂ν

)2

dΓdt. (9.59)

Combining (9.58) and (9.59) we finish the proof of the theorem.

�

9.5 Exact controlabillity

In this section we conclude the proof of Theorem 9.1. Let L the operator defined in

(9.1), that is

Lu = u′′ − ∂

∂xi

(
aij

∂u

∂xj

)
+ bi

∂u′

∂xj

+ [(1− n)k′2 − k′′k]k−2xi
∂u

∂xi

where aij, bi are defined in (9.26). Consider the problem

��������

Lu = 0 in Q,

u = v in Σ,

u(0) = u0, u′(0) = u1 in Ω.

(9.60)
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First of all, we define the concept of solution of Problem (9.60). Formal integration by

parts on Q gives
∫

Q

Lu· zdxdt = −
∫

Ω

u′(0)z(0)dx+

∫

Ω

u(0)z′(0)dx−

−
∫

Ω

bi(0)
∂

∂xi

u(0)z(0)dx+

∫

Σ

u
∂u

∂νA
dΓdt+

+

∫

Q

whdxdt

(9.61)

where z is the solution of the problem

��������

L∗z = h in Q,

z = 0 in Σ,

z(T ) = 0, z′(T ) = 0 in Ω

(9.62)

and
∂z

∂νA
= aij(x, t)

∂z

∂xj

νi. (9.63)

If h ∈ L1(0, T ;L2(Ω)), by Theorem 9.3 and Remark 9.5, we have that the solution z of

Problem (9.62) verifies

z ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))

|z′(0)|+ ∥z(0)∥ ≤ C

∫ T

0

|h|dt
(9.64)

and by Theorem 9.7 and Remark 9.7,

∂z

∂ν
∈ L2(Σ),

����
∂z

∂ν

����
L2(Σ)

≤ C

∫ T

0

|h|dt (9.65)

with C a constant independent of z and h.

Motivated by (9.61)-(9.65) we introduce the following definition: let

u0 ∈ L2(Ω), u1 ∈ H−1(Ω), v ∈ L2(Σ) (9.66)

We say that u ∈ L∞(0, T ;L2(Ω)) is a solution defined by transposition of Problem

(9.60) with data u0, u1, v if

∫ T

0

(u, h)dt = ⟨u1, z(0)⟩ − (u0, z′(0))−

−
⟨
2k′(0)

k(0)
xi
∂u0

∂xi

, z(0)

⟩
−
∫ T

0

(
v,

∂z

∂νA

)

L2(Γ)

dt

(9.67)

for every h ∈ L1(0, T ;L2(Ω)) where z is related to h by Problem (9.62).
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Clearly the above solution u is unique. We also have from (9.64) and (9.65)

∥u∥L∞(0,T ;L2(Ω)) ≤ C
(
|u0|+ ∥u1∥H−1(Ω) + ∥v∥L2(Σ)

)
(9.68)

where C is a constant independent of u.

In order the prove the regularity of the solutions defined by transposition we introduce

a previous result. Let h ∈ D(Q), D(Q) space of test function on Q, and z the weak solution

of the problem ��������

L∗z = h′ in Q,

z = 0 in Σ,

z(0) = 0, z′(0) = 0 in Ω.

(9.69)

From Theorem 9.4 we have that z verifies the estimate

∥z(t)∥+ |z′(t)− h(t)| ≤ C

∫ T

0

∥h∥dt, ∀t ∈ [0, T ], (9.70)

where C is a constant independent of z and h. In virtue of Theorem 9.7 we obtain from

(9.69) that ∂z
∂ν

∈ L2(Σ).

Lemma 9.2 The solution z of (9.69) with h ∈ D(Q) verifies

����
∂z

∂ν

����
L2(Σ)

≤ C

∫ T

0

∥h∥dt

where C is a constant independent of z and h.

Proof. We have by Theorem 9.6 that z verifies the identity (9.34). In what follows we

bound each term of this identity by

C

(∫ T

0

∥h∥dt
)2

, C constant independent of z and h. (9.71)

We obtain by estimate (9.70) that

(
z′ +

1

2

∂

∂xi

[biz], ql
∂z

∂xl

) ���
T

0
is bounded by (9.71). (9.72)

The equality z′2 = (z′ − h)2 + 2h(z′ − h) + h2 gives

1

2

∫ T

0

∫

Ω

∂ql
∂xl

z′
2
dxdt =

1

2

∫ T

0

∫

Ω

∂ql
∂xl

(z′ − h)2dxdt+

+

∫ T

0

∫

Ω

∂ql
∂xl

h(z′ − h)dxdt+
1

2

∫ T

0

∫

Ω

∂ql
∂xl

h2dxdt

(9.73)
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On the other hand, the last integral on the right side of (9.34) after integration by parts

on Q becomes

∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt =

∫ T

0

∫

Ω

∂h

∂xl

qlz
′dxdt+

∫ T

0

∫

Ω

h
∂ql
∂xl

z′dxdt

Then the equality z′ = (z′ − h) + h and Remark 9.4, part (i) applied in this last two

integral furnish

−
∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt = −
∫ T

0

∫

Ω

∂h

∂xl

(z′ − h)dxdt−

− 1

2

∫ T

0

∫

Ω

∂ql
∂xl

h2dxdt−
∫ T

0

∫

Ω

∂ql
∂xl

h(z′ − h)dxdt

(9.74)

The addition of (9.73) and (9.74) implies

∫ T

0

∫

Ω

∂ql
∂xl

z′
2
dxdt−

∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt =

=
1

2

∫ T

0

∫

Ω

∂ql
∂xl

(z′ − h)2dxdt−
∫ T

0

∫

Ω

∂h

∂xl

ql(z
′ − h)dxdt

(9.75)

The estimate (9.70) applied on the right side of (9.75) permits to bound the left side of

this equality by (9.71).

The other integrals on the right side of (9.34) can by bounded by (9.71) after use of

the equality z′ = (z′−h)+h and estimate (9.70). Thus the identity (9.34), (9.72) and the

last two boundedness give the lemma.

�

Theorem 9.9 Every solution u defined by transposition of Problem (9.60) has the regu-

larity

u ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) (9.76)

and the linear map

L2(Ω)×H−1(Ω)× L2(Σ) �→ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω))

{u0, u1, v} �→ w

is continuous.

Proof. First we prove that u ∈ C([0, T ];L2(Ω)). Fix u0, u1, v in the class (9.66). Let

(u0
µ), (u

1
µ), (vµ) be sequence of vectors of H1

0 (Ω), L
2(Ω) and H2

0 (0, T ;H
2(Γ)), respectively,

such that

u0
µ → u0 in L2(Ω), u1

µ → u1 in H−1(Ω), vµ → v in L2(Σ). (9.77)

122



108 HUM and the Wave Equation with Variable Coefficients

On the other hand, the last integral on the right side of (9.34) after integration by parts

on Q becomes

∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt =

∫ T

0

∫

Ω

∂h

∂xl

qlz
′dxdt+

∫ T

0

∫

Ω

h
∂ql
∂xl

z′dxdt

Then the equality z′ = (z′ − h) + h and Remark 9.4, part (i) applied in this last two

integral furnish

−
∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt = −
∫ T

0

∫

Ω

∂h

∂xl

(z′ − h)dxdt−

− 1

2

∫ T

0

∫

Ω

∂ql
∂xl

h2dxdt−
∫ T

0

∫

Ω

∂ql
∂xl

h(z′ − h)dxdt

(9.74)

The addition of (9.73) and (9.74) implies

∫ T

0

∫

Ω

∂ql
∂xl

z′
2
dxdt−

∫ T

0

∫

Ω

h′ql
∂z

∂xl

dxdt =

=
1

2

∫ T

0

∫

Ω

∂ql
∂xl

(z′ − h)2dxdt−
∫ T

0

∫

Ω

∂h

∂xl

ql(z
′ − h)dxdt

(9.75)

The estimate (9.70) applied on the right side of (9.75) permits to bound the left side of

this equality by (9.71).

The other integrals on the right side of (9.34) can by bounded by (9.71) after use of

the equality z′ = (z′−h)+h and estimate (9.70). Thus the identity (9.34), (9.72) and the

last two boundedness give the lemma.

�

Theorem 9.9 Every solution u defined by transposition of Problem (9.60) has the regu-

larity

u ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) (9.76)

and the linear map

L2(Ω)×H−1(Ω)× L2(Σ) �→ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω))

{u0, u1, v} �→ w

is continuous.

Proof. First we prove that u ∈ C([0, T ];L2(Ω)). Fix u0, u1, v in the class (9.66). Let

(u0
µ), (u

1
µ), (vµ) be sequence of vectors of H1

0 (Ω), L
2(Ω) and H2

0 (0, T ;H
2(Γ)), respectively,

such that

u0
µ → u0 in L2(Ω), u1

µ → u1 in H−1(Ω), vµ → v in L2(Σ). (9.77)

9.5. Exact controlabillity 109

Let ṽµ be a function in H2
0 (0, T ;H

2(Ω)) such that γṽµ = {vµ, 0}, γ function trace on Γ,

and yµ the solution of the problem

��������

Lyµ = −Lṽµ in Q,

yµ = 0 on Σ,

yµ(0) = uµ
0, y′µ(0) = uµ

1 in Ω.

Then by Theorem 9.3,

yµ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

Then we have that uµ = yµ + ṽµ is the solution defined transposition of Problem (9.60)

with data u0
µ, u

1
µ and uµ ∈ C([0, T ];L2(Ω)). Therefore, by (9.68),

∥u− uµ∥L∞(0,T ;L2(Ω) ≤ C
[
|u0 − uµ|+ ∥u1 − u1

µ∥H−1(Ω) + ∥v − vµ∥L2(Σ)

]
.

Taking the limit in this expression and using convergences (9.77) and the regularity of uµ,

we obtain that u ∈ C([0, T ];L2(Ω)).

Now we consider h ∈ D(Q) and z the weak solution of the problem

��������

L∗z = h′ in Q,

z = 0 in Σ,

z(T ) = 0, z′(T ) = 0 in Ω.

(9.78)

Then by Theorem 9.4 and Remark 9.5 we have that

∥z(t)∥+ |z′(t)− h(t)| ≤ C

∫ T

0

∥h∥dt, ∀t ∈ [0, T ], (9.79)

and by Lemma 9.1 ����
∂z

∂ν

����
L2(Σ)

≤ C

∫ T

0

∥h∥dt. (9.80)

The constants in (9.79) and (9.80) are independent of z and h.

We have that u′ ∈ H−1(0, T ;L2(Ω)) because u ∈ L2(0, T ;L2(Ω)). Then

⟨u′, h⟩ = −(u, h′)L2(Q) = −
∫ T

0

(u, h′)dt.

As u is a solution defined by transposition on Problem (9.60) one has from (9.78)

∫ T

0

(u, h′)dt = ⟨u1, z(0)⟩ − (u0, z′(0))−

−
⟨
2k′(0)

k(0)
xi
∂u0

∂xi

, z(0)

⟩
−
∫ T

0

(
v,

∂z

∂νA

)

L2(Γ)

dt
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From estimates (9.79) and (9.80) we then obtain

|⟨u′, h⟩| ≤ C
[
|u0|+ ∥u1∥H−1(Ω) + ∥v∥L2(Σ)

] ∫ T

0

∥h∥dt, ∀h ∈ D(Q)

This implies by the density of D(Q) in L1(0, T ;H1
0 (Ω)) that

u′ ∈ L∞(0, T ;H−1(Ω))

and

∥u′∥L∞(0,T ;H−1(Ω)) ≤ C
[
|u0|+ ∥u1∥H−1(Ω) + ∥v∥L2(Σ)

]
. (9.81)

By similar arguments used as in the first part of the proof and noting that u′
µ ∈ C([0, T ];H−1(Ω))

we conclude that u′ ∈ C([0, T ];H−1(Ω)).

The continuity of the linear application {u0, u1, v} �→ u is obtained by (9.68) and

(9.81).

�

Remark 9.9 It is clear that we can also define the solution defined by transposition u of

the backward problem ��������

Lu = 0 in Q,

u = v on Σ,

u(T ) = u0, u′(T ) = u1 in Ω

in a similar manner as in Problem (9.60) and Theorem 9.9 is also true for this solution

u. This is a consequence of Remark 9.5 and 9.7.

Now we finish the proof of Theorem 9.1. Let φ be the weak solution of the problem

��������

L∗φ = 0 in Q,

φ = 0 in Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω

(9.82)

with {φ0, φ1} ∈ H1
0 (Ω)× L2(Ω). Then by Theorems 9.7 and 9.8 one has

φ ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)),

∂φ
∂ν

∈ L2(Σ) and

C1(T − T0)E0 ≤
����
∂φ

∂ν

����
2

L2(Σ(x0))

≤ C2(T + 1)E0 (9.83)
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where C1, C2 are constants independent of φ. With φ one constructs the solution defined

by transposition ψ of the problem
������������

Lψ = 0 in Q,

ψ =





∂φ

∂ν
on Σ(x0),

0 on Σ \ Σ(x0),

ψ(T ) = 0, ψ′(T ) = 0.

(9.84)

Then by Theorem 9.9 and Remark 9.9, ψ belongs to the class

ψ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).

We have ���������

⟨Lψ, φ⟩ = −
⟨
ψ′(0)− 2k′(0)

k(0)
xi
∂ψ(0)

∂xi

, φ0

⟩
+

+ (ψ(0), φ1) +

∫ T

0

∫

Γ(y0)

∂φ

∂ν

∂φ

∂νA
dΓdt+ ⟨ψ, L∗φ⟩

(9.85)

that implies ���������

⟨
ψ′(0)− 2k′(0)

k(0)
xi
∂ψ(0)

∂xi

, φ0

⟩
− (ψ(0), φ1) =

=

∫ T

0

∫

Γ(x0)

aij
∂φ

∂xj

νi
∂φ

∂ν
dΓdt.

(9.86)

The last expression induces the introduction of the following operator:

Λ : H1
0 (Ω)× L2(Ω) → H−1(Ω)× L2(Σ))

{φ0, φ1} �→ Λ{φ0, φ1} =
{
ψ′(0)− 2k′(0)

k(0)
xi

∂ψ(0)
∂xi

,−ψ(0)
}
.

By (9.86) and noting that
∂φ

∂xj

= νj
∂φ

∂νj
on Γ,

we obtain

a0

����
∂φ

∂ν

����
2

L2(Σ(x0))

≤ ⟨Λ{φ0, φ1}, {φ0, φ1}⟩ ≤ a1

����
∂φ

∂ν

����
2

L2(Σ(x0))

.

This and (9.83) imply that Λ is injective. With {φ̃0, φ̃1} one determine the weak solution φ̃

of Problem (9.82) and with ∂φ̃
∂ν
, the solution defined by transposition ψ̃ of Problem (9.84).

If we develop ⟨Lψ, φ̃⟩, one obtains as (9.85)

⟨Λ{φ0, φ1}, {φ̃0, φ̃1}⟩ =
∫ T

0

∫

Γ(x0)

aij
∂φ̃

∂xj

νi
∂φ

∂ν
dΓdt

and if we develop ⟨Lψ̃, φ⟩,

⟨Λ{φ̃0, φ̃1}, {φ0, φ1}⟩ =
∫ T

0

∫

Γ(x0)

aij
∂φ

∂xj

νi
∂φ̃

∂ν
dΓdt.

125



112 HUM and the Wave Equation with Variable Coefficients

Observing that
∂φ

∂xj

= νj
∂φ

∂ν
on Γ,

we then obtain from the last two equalities that Λ is self-adjoint. Thus

Λ is an isomorphism from H1
0 (Ω)× L2(Ω) onto H−1(Ω)× L2(Ω) (9.87)

Let {u0, u1} ∈ L2(Ω) × H−1(Ω). Then by (9.87), there exists {φ0, φ1} ∈ H1
0 (Ω) × L2(Ω)

such that

Λ{φ0, φ1} =

{
u1 − 2k′(0)

k(0)
xi
∂u0

∂xi

,−u0

}
.

With {φ0, φ1} one determines the weak solution φ of Problem (9.82) and with ∂φ
∂ν
, the

solution defined by transposition ψ of Problem (9.84). Then we have that u = ψ satisfies

all the required conditions of Theorem 9.1.

The expression (9.85) is justified by approximation’s arguments that hold for smooth

solutions φ and ψ. Analogously for the other expressions. Thus we have concluded the

proof of Theorem 9.1.
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Polytechnique and hospitality in Paris. He is also grateful to the Centre de Mathématiques
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Chapter 10

Exact Controllability for the Wave

Equation in Domains with

Variable Boundary

10.1 Introduction.

In this chapter we are interested in the exact boundary controllability of the system:

��������

�u′′ −△�u = 0 in �Q,

�u = �v in �Σ,
�u(0) = �u0, �u′(0) = �u1 in Ω0

(*)

where �Q is a non cylindrical domain of Rn+1. The result is obtained by transforming the

problem �Q in a problem defined in a cylindrical domain Q and the showing that these two

problems are equivalent. The result in Q is studied by applying the HUM of J.L.Lions. 1

Let Ω be an open boundary set of Rn with boundary Γ of class C2, which, without

loss of generality, can be assumed containing the origin of Rn, and k : [0,∞[→ [0,∞[ a

continuously differentiable function. Let us consider the subsets Ωt of Rn given by

Ωt = {x ∈ Rn; x = k(t)y, y ∈ Ω}, 0 ≤ t ≤ T < ∞,

whose boundaries are denoted by Γt, and �Q the non cylindrical domain of Rn+1,

�Q =
∪

0<t<T

Ωt × {t} (10.1)

1This part is a paper that was published for one of Authors in Revista Matemática, Universidad

Complutense de Madrid, 9 (1996), pp. 435-457.
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with lateral boundary

�Σ =
∪

0<t<T

Γt × {t}.

Graphically it wold be We have the following system:

Figure 10.1: Non-cylindrical Domain

��������

�u′′ −∆�u = 0 in �Q,

�u = �v on �Σ,
�u(0) = �u0, �u′ = �u1 on Ω0

(*)

where �u′′ stands for ∂2û
∂t2

and �u(0), �u′(0) denote, respectively, the functions x �→ �u(x, 0),
x �→ �u′(x, 0). Here �v is the control variable, that is, it acts on the system (∗) through the

lateral boundary �Σ.
The problem of exact controllability for system (∗) states as follows: Given T > 0 large

enough, is it possible, for every initial data {�u0, �u1} in an appropriate space to a find a

control �v driving the system to rest at time T, i.e., such that the solution �u(x, t) of (∗)
satisfies

�u(T ) = 0, �u′(T ) = 0? (10.2)

We show that system (∗) is exactly controllable. Our approach consists first in trans-

forming (∗), by using k(t), in a system defined in the cylindrical domain Q = Ω×]0, T [.

This system will have the following form:

����������

u′′ − ∂

∂yi

(
aij(y, t)

∂u

∂yi

)
+ bi(y, t)

∂u′

∂yi
+ di(y, t)

∂u

∂yi
= 0 in Q,

u = v in Σ = Γ×]0, T [,

u(0) = u0, u′(0) = u1 in Ω.

(**)
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Remark 10.1 Here and in what follows the summation convention of repeated indices is

adopted.

Then we show that the study of the exact controllability problem for (∗) reduces to the

study of the controllability for system (∗∗). The control v̂ will be expressed in function

of a weak solution θ̂ of the wave equation in the non cylindrical domain Q̂. For that, an

appropriate change of variables is needed.

The controllability for system (∗∗) was analysed in the Chapter 9. The Hilbert Unique-

ness Method (HUM) of J.L.Lions [39] is used in this analysis.

The existence of solutions of the initial boundary value problem for the nonlinear

wave equation in general non cylindrical domain Q̂ was studied among other authors by

J.L.Lions [42], L.A.Medeiros [46], when Q̂ is increasing and by C. Bardos and J. Cooper [3]

when Q̂ is time like. A. Inoue [24] also analised this type of problems. The linear case was

treated by J. Sikorav [62] when Q̂ is time like. He used tools of Differential Topology. The

exact internal controllability problem for the wave equation in non cylindrical domains

was treated by C. Bardos and G. Cheng [2]. They did not use HUM.

Remark 10.2 The non cylindrical domain Q̂ that we have considered in (∗) is time like

but it is not necessarily increasing or decreasing. This occurs because the derivative k′(t)

does not have sign condition. Q̂ is named time like when the unit normal vector η = (ηx, ηt)

to Σ̂, directed towards the exterior of Q̂, satisfies |ηt| < |ηx|.

The Plan of this Chapter is organized as follows.

• Main result.

• Summary of Results on the Cylinder.

• Spaces on the Non Cylindrical Domain.

• Proof of the Main Result.

10.2 Main Result

Let us introduce some notations (cf. J.L. Lions [39]). Let y0 ∈ Rn, m(y) = y − y0 and

ν(y) the unit normal vector at y ∈ Γ, directed towards the exterior of Ω. Consider the sets

Γ(y0) = {y ∈ Γ;m(y) · ν(y) ≥ 0}, Σ(y0) = Γ(y0)×]0, T [
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and the corresponding sets in the (x, t)-coordinates,

Γt(y
0) = {x ∈ Γt; x = k(t)y, y ∈ Γ(y0)}, 0 ≤ t ≤ T

and

�Σ(y0) =
∪

0<t<T

Γt(y
0)× {t}

In the definition of Γ(y0), · denotes the scalar product in Rn. We represent by η = (ηx, ηt)

the unit normal vector to �Σ, directed towards the exterior of �Q and by ν∗ the vector ηx
|ηx| .

Let

R(y0) = sup
y∈Ω

|m(y)|, M = sup
y∈Ω

|y|

and λ1 the first eigenvalue of the spectral problem −△φ = λφ, φ ∈ H1
0 (Ω).

We make the following assumptions:

The boundary Γ of Ω is C2 (H1)

and concerning the function k,

k ∈ W 3,∞
loc (]0,∞[) (H2)

0 < k0 = inf
t≥0

k(t), sup
t≥0

k(t) = k1 < ∞ (H3)

sup
t≥0

|k′(t)| = τ <
1

M
(H4)

l1 =

∫ ∞

0

|k′(t)|dt < ∞, l2 =

∫ ∞

0

|k′′(t)|dt < ∞. (H5)

Hypothesis (H4) implies that the non cylindrical domain �Q is time like. The unit outer

normal vector η(x, t) to �Σ is given in Remark 10.5.

All the scalar functions considered in the chapter will be real-valued.

In �Q, �Q defined by (10.1), we have the following system:
�����������

�u′′ −△�u = 0 in �Q,

�u =

{
�v on �Σ(y0),
0 on �Σ \ �Σ(y0),

�u(0) = �u0, �u′(0) = �u1 in Ω0.

(10.3)

In (10.12) we will give an explicit value for the minimal controllability time T0 depending

on n, R(y0), λ1, the function k and on the geometry of Ω, and in (10.23), an isomorphism

Λ1 : L
2(Ω0)×H−1(Ω0) �→ H1

0 (Ω0)× L2(Ω0), Λ1{�u0, �u1} = {�θ0, �θ1}
which allows to compute the control �v for the initial data {�u0, �u1}.

Now we state the main result of the problem.
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Theorem 10.1 We assume that hypotheses (H1)-(H5) are satisfied. Let T > T0. Then,

for each initial data {�u0, �u1} belonging to L2(Ω0) × H−1(Ω0), there exists a control �v ∈
L2(0, T ;L2(Γt(y

0))) such that the solution �u of system (10.3) satisfies the final condition

(10.2). Moreover, the control �v has the form �v = ∂θ̂
∂ν∗

where �θ is the weak solution of the

problem ��������

�θ′′ −△�θ = 0 in �Q,

�θ = 0 in �Σ,
�θ(0) = �θ0, �θ′(0) = �θ1 in Ω0

with Λ1{�u0, �u1} = {�θ0, �θ1}.

The next three sections will be devoted to the proof of the above theorem.

10.3 Summary of Results on the Cylinder

Is this section we list the results on the cylinder Q that we will use in Section 5. Its

proof can be found in chapter 9.

We consider the operator

Lw = w′′ − ∂

∂yi

(
aij(y, t)

∂w

∂yj

)
+ bi(y, t)

∂w′

∂yi
+ di(y, t)

∂w

∂yi
(10.4)

where

aij(y, t) = (δij − k′2yiyj)k
−2,

bi(y, t) = −2k′k−1yi, di(y, t) = [(1− n)k′
2 − k′′k]k−2yi.

Then for z test function on Q, we have

∫ T

0

∫

Ω

(Lw)zdydt =

∫ T

0

∫

Ω

w

[
z′′ − ∂

∂yi

(
aij

∂z

∂yj

)
+

∂

∂yi
(biz)

′ − ∂

∂yi
(diz)

]
dydt =

=

∫ T

0

∫

Ω

wL∗zdydt.

We obtain

∂

∂yi
(biz)

′ = bi
∂z′

∂yi
− 2nk′k−1z′ + (2k′2 − 2k′′k)k−2yi

∂z

∂yi
+

+ (2nk′2 − 2nk′′k)k−2z − ∂

∂yi
(diz) = [k′′k − (1− n)k′2]R−2yi

∂z

∂yi
+

+ [nk′′k − n(1− n)k′2]k−2z.
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Thus L∗z, the formal adjoint of L, has the form

L∗z = z′′ − ∂

∂yi

(
aij(y, t)

∂z

∂yj

)
+ bi(y, t)

∂z′

∂yi
+ Pz (10.5)

where

Pz = −2nk′k−1z′ + [(n+ 1)k′2 − k′′k]k−2yi
∂z

∂yi
+

+ [n(n+ 1)k′2 − nk′′k]R−2z.

Let us consider the problem

��������

L∗z = h in Q,

z = 0 on Σ,

z(0) = z0, z′(0) = z1 in Ω

(10.6)

with data

z0 ∈ H1
0 (Ω), z1 ∈ L2(Ω), h ∈ L1(0, T ;L2(Ω)). (10.7)

A function z : Q → R will be called a weak solution of Problem (10.6) if z belongs to

the class

z ∈ L∞(0, T ;∈ H1
0 (Ω)), z′ ∈ L∞(0, T ;L2(Ω)),

satisfies the equation

−
∫ t

0

(z′, ξ′)dt+

∫ T

0

a(t, z, ξ)dt+

∫ T

0

⟨
bi
∂z′

∂yi
, ξ

⟩
dt+

+

∫ T

0

(Pz, ξ)dt =

∫ T

0

(h, ξ)dt,

∀ξ ∈ L2(0, T ;H1
0 (Ω)), ξ′ ∈ L2(0, T ;L2(Ω)), ξ(0) = ξ(T ) = 0

and the initial conditions

z(0) = z0, z′(0) = z1.

Here (·, ·) denotes the inner product of L2(Ω), ⟨·, ·⟩ the duality pairing between F ′ and F,

F being a generic space and F ′ its dual, and

a(t, z, ξ) =

∫

Ω

aij(y, t)
∂z

∂yj

∂ξ

∂yi
dy.

We observe that if z is a weak solution of Problem (10.6) then z′ is weakly continuous

from [0, T ] with values in L2(Ω). Therefore the above initial condition z′(0) makes sense.

The regularity of z′ follows from z′ ∈ L∞(0,∞;L2(Ω)) and z′′ ∈ L∞(0,∞;H−1(Ω)).

Concerning to Problem (10.6) we have the following result:
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Theorem 10.2 For each data z0, z1, h in the class (10.7), there exists a unique weak

solution z of Problem (10.6). This solution has the regularity:

z ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))

and
∂z

∂ν
∈ L2(0, T ;L2(Γ)). (10.8)

From (10.8) it follows that ∂z
∂νA

belongs to L2(0, T ;L2(Γ)) where

∂z

∂νA
= aij(y, t)

∂z

∂yj
νi.

We obtain all the above results it instead of Problem (10.6) we consider the backward

problem ��������

L∗z = h in Q,

z = 0 on Σ,

z(T ) = z0, z′(T ) = z1 in Ω.

(10.9)

Let us consider the problem

��������

Lu = 0 in Q,

u = g on Σ,

u(0) = u0, u′(0) = u1 in Ω

(10.10)

with data

u0 ∈ L2(Ω), u1 ∈ H−1(Ω), g ∈ L2(0, T ;L2(Γ)). (10.11)

We say that u ∈ L∞(0, T ;L2(Ω)) is a solution defined by transposition of Problem

(10.10) if

∫ T

0

(u, h)dt = ⟨u1, z(0)⟩ − (u0, z′(0))−
⟨
2k′(0)

k(0)
yi
∂u0

∂yi
, z(0)

⟩
−

−
∫ T

0

(
g,

∂z

∂νA

)

L2(Γ)

dt

for every h ∈ L1(0, T ;L2(Ω)) where z is related to h by Problem (10.9) with z0 = z1 = 0.

We have the following result:

Theorem 10.3 For each data u0, u1, g in the class (10.11), there exists a unique solution

defined by transposition w of Problem (10.10). This solution has the regularity

u ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).
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We can change the initial data at time t = 0 by final data at time t = T in Problem

(10.10) and obtain the same above result.

In the sequel we introduce some constants in order to state the main result of this

chapter. By hypotheses (H3),(H4) of Section 10.2 one has that there exists a unique

positive constant α0 such that

aij(y, t)ξiξj ≥ α0ξiξj, ∀{y, t} ∈ Ω× [0,∞), ∀ξ ∈ Rn.

With this and the notations of Section 10.2, we define:

C0 = 2(1 + τk1M
2 + τ 2M2 + nα0k

2
1)(α0k

3
0)

−1(l1 + l2)

+ 2(λ
1
2
1M + n)(nτ + τ + k1)(α

1
2
0 k

2
0λ

1
2
1 )

−1(l1 + l2),

C1 = e−C0 , C2 = eC0 .

The minimal controllability time T0 is then defined by

T0 = [2α
− 1

2
0 R(y0) +K1 +K2 +K3]C2C

−1
1 (10.12)

where

K1 =
2τ [(n− 1)M + 2R(y0) + 2λ

1
2
1MR(y0)]

α0k0λ
1
2
1

K2 =
2l1(n+ 1)R(y0)[τM + α

1
2
0 k0]

α0k2
0

K3 =
l1n(n+ 1)[τM + α

1
2
0 k0]

α0k2
0λ

1
2
1

We consider the problem �����������

Lu = 0 in Q,

u =

{
g on Σ(y0),

0 on Σ \ Σ(y0),

u(0) = u0, u′(0) = u1 in Ω.

(10.13)

We have the following exact controllability result:

Theorem 10.4 Let T > T0, T0 given by (10.12). Then for every {u0, u1} ∈ L2(Ω) ×
H−1(Ω) there exists a control g ∈ L2(

∑
(y0)) such that the solution defined by transposition

u of Problem (10.13) satisfies

u(T ) = 0, u′(T ) = 0.
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H−1(Ω) there exists a control g ∈ L2(
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Remark 10.3 We observe that if k(t) ≡ 1 then K1 = K2 = K3 = 0, C1 = C2 = 1

and α0 = 1. Therefore T0 = 2R(y0). Thus, in this case T0 coincides with the minimal

controllability time obtained earlier by J.L. Lions [39] and V. Komornik [26] for the wave

equation u′′ −△u = 0.

Let φ be the weak solution of problem

��������

L∗φ = 0 in Q,

φ = 0on Σ,

φ(0) = φ0, φ′(0) = φ1 in Ω

(10.14)

with {φ0, φ1} ∈ H1
0 (Ω)× L2(Ω), and ψ the solution defined by transposition of problem

�����������

Lψ = 0 in Q,

ψ =

{
∂φ
∂ν

on Σ(y0),

0 on Σ \ Σ(y0),

ψ(T ) = 0, ψ′(0) = 0 in Ω.

(10.15)

With these last two problems, we introduce the operator Λ,

H1
0 (Ω)× L2(Ω) → H−1(Ω)× L2(Ω)

{φ0, φ1} �→ Λ{φ0, φ1} =
{
ψ′(0)− 2k′(0)

k(0)
yi

∂ψ(0)
∂yi

,−ψ(0)
} (10.16)

The proof of Theorem 10.4 is reduced to prove that the operator

Λ is an isomorphism from H1
0 (Ω)× L2(Ω) onto H−1(Ω)× L2(Ω).

This is done by showing, by multiplier techniques, that the following observability inequal-

ity holds for T > T0 :

1

2
|φ1|2 + 1

2
a(0;φ0, φ0) ≤ C

∫ T

0

∫

Γ(y0)

����
∂φ

∂ν

����
2

dΓdt

where φ is the solution of problem (10.14). We refer to Chapter 9 for the technical details.

Remark 10.4 In system (10.15) we can consider ∂φ
∂νA

instead ∂φ
∂ν

and to obtain also the

exact controllability for system (10.13). On the other side if φ(y, t) = kn(t)θ(k(t)y, t),

x = k(t)y, then

∂φ

∂νA
(y, t) =

(
δij − k′2yiyj

)
k−2 ∂φ

∂yj
(y, t)νi(y) =

=
(
δij − k−2k′2xixj

)
kn−1 ∂θ

∂xj

(x, t)ν∗
i (x, t).

(10.17)
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and
∂φ

∂ν
(y, t) = kn+1 ∂θ

∂ν∗ (x, t).

(For the computations see (10.35). We note that the second member of (10.17) is not a

known derivative of the function θ. For this reason we consider ∂φ
∂ν

instead ∂φ
∂νA

in (10.15).

10.4 Spaces on the Non Cylindrical Domain

Let �u : �Q → R be a function such that

�u(x, t) = k−n(t)ξ

(
x

k(t)
, t

)
, ξ ∈ Lp(0, T ;Wm,q

0 (Ω)) (10.18)

Then we have �u(t) ∈ Wm,q
0 (Ωt) a.e t in ]0, T [ and

∥�u(t)∥Wm,q
0 (Ωt) = k

n
q
−m−n(t)∥ξ(t)∥Wm,q

0 (Ω).

Therefore,

C3∥ξ(t)∥Wm,q
0 (Ω) ≤ ∥�u(t)∥Wm,q

0 (Ωt) ≤ C4∥ξ(t)∥Wm,q
0 (Ω) (10.19)

Here and in what follows C3, C4 will denote generic positive constants which are indepen-

dent of �u and ξ.

We denote by Lp(0, T ;Wm,q
0 (Ωt)) (1 ≤ p ≤ ∞, 1 ≤ q < ∞, m a non-negative integer)

the space of (class of ) function �u : �Q → R such that there exists ξ ∈ Lp(0, T ;Wm,q
0 (Ω))

verifying (10.18), equipped with the norm

∥�u∥Lp(0,T ;Wm,q
0 (Ωt)) =

(∫ T

0

∥�u(t)∥p
Wm,q

0 (Ωt)
dt

) 1
p

, 1 ≤ p < ∞

∥�u∥L∞(0,T ;Wm,q
0 (Ωt)) = ess sup

t∈]0,T [

∥�u(t)∥Wm,q
0 (Ωt).

By (10.19), the space X = Lp(0, T ;Wm,q
0 (Ωt)) is a Banach space and the linear map

Lp(0, T ;Wm,q
0 (Ω)) �→ X, ξ �→ Uξ (10.20)

is an isomorphism.

We write C([0, T ];Wm,q
0 (Ωt)) to denote the closed subspace of L∞(0, T ;Wm,q

0 (Ωt)) cons-

tituted by functions �u such that the corresponding ξ given (10.18) belongs to C([0, T ];Wm,q
0 (Ω)).

The dual space of X = Lp(0, T ;H1
0 (Ωt))

(
1 ≤ p < ∞, 1

p
+ 1

p′
= 1

)
will be identified

with Lp′(0, T ;H−1(Ωt)). In what follows we characterize the vectors of this space. In fact,

we have by the properties of U defined in (10.20), that if S ∈ X ′ then there exists a unique

R ∈ Lp′(0, T ;H−1(Ω)) such that

⟨S, �u⟩ = ⟨R, ξ⟩, ξ = U−1�u.
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and
∂φ
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, t

)
, ξ ∈ Lp(0, T ;Wm,q

0 (Ω)) (10.18)

Then we have �u(t) ∈ Wm,q
0 (Ωt) a.e t in ]0, T [ and

∥�u(t)∥Wm,q
0 (Ωt) = k

n
q
−m−n(t)∥ξ(t)∥Wm,q

0 (Ω).

Therefore,

C3∥ξ(t)∥Wm,q
0 (Ω) ≤ ∥�u(t)∥Wm,q

0 (Ωt) ≤ C4∥ξ(t)∥Wm,q
0 (Ω) (10.19)

Here and in what follows C3, C4 will denote generic positive constants which are indepen-

dent of �u and ξ.

We denote by Lp(0, T ;Wm,q
0 (Ωt)) (1 ≤ p ≤ ∞, 1 ≤ q < ∞, m a non-negative integer)

the space of (class of ) function �u : �Q → R such that there exists ξ ∈ Lp(0, T ;Wm,q
0 (Ω))

verifying (10.18), equipped with the norm

∥�u∥Lp(0,T ;Wm,q
0 (Ωt)) =

(∫ T

0

∥�u(t)∥p
Wm,q

0 (Ωt)
dt

) 1
p

, 1 ≤ p < ∞

∥�u∥L∞(0,T ;Wm,q
0 (Ωt)) = ess sup

t∈]0,T [

∥�u(t)∥Wm,q
0 (Ωt).

By (10.19), the space X = Lp(0, T ;Wm,q
0 (Ωt)) is a Banach space and the linear map

Lp(0, T ;Wm,q
0 (Ω)) �→ X, ξ �→ Uξ (10.20)

is an isomorphism.

We write C([0, T ];Wm,q
0 (Ωt)) to denote the closed subspace of L∞(0, T ;Wm,q

0 (Ωt)) cons-

tituted by functions �u such that the corresponding ξ given (10.18) belongs to C([0, T ];Wm,q
0 (Ω)).

The dual space of X = Lp(0, T ;H1
0 (Ωt))

(
1 ≤ p < ∞, 1

p
+ 1

p′
= 1

)
will be identified

with Lp′(0, T ;H−1(Ωt)). In what follows we characterize the vectors of this space. In fact,

we have by the properties of U defined in (10.20), that if S ∈ X ′ then there exists a unique

R ∈ Lp′(0, T ;H−1(Ω)) such that

⟨S, �u⟩ = ⟨R, ξ⟩, ξ = U−1�u.
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and

C3∥R∥ ≤ ∥S∥ ≤ C4∥R∥.

To show that, it is sufficient to take R = U∗S where U∗ is the adjoint operator of U . On

the other side, with R we define the operator P :

⟨P (t), �α⟩ = ⟨R(t), β⟩, �α ∈ H1
0 (Ωt).

where β(y) = kn(t)�α(k(t)y). Then

C3∥R(t)∥H−1(Ω) ≤ ∥P (t)∥H−1(Ωt) ≤ C4∥R(t)∥H−1(Ω)

since

C3∥β∥H1
0 (Ω) ≤ ∥�α∥H1

0 (Ωt) ≤ C4∥β∥H1
0 (Ω).

Thus, by identifying S with R and R with P, we obtain that the space Lp′(0, T ;H−1(Ωt))

is constituted by the functionals �S such that

�S :]0, T [→ H−1(Ωt)), �S measurable

∃R ∈ Lp′(0, T ;H−1(Ω)) satisfying ⟨�S(t), �α⟩ = ⟨R(t), β⟩,

a.e. t in ]0, T ], β(y) = kn(t)�α(k(t)y)
and the norm is given by

∥�S∥Lp′ (0,T ;H−1(Ωt))
=

(∫ T

0

∥�S(t)∥p′H−1(Ωt)
dt

) 1
p′

, 1 < p′ < ∞

∥�S∥L∞(0,T ;H−1(Ωt)) = ess sup
t∈]0,T [

∥�S(t)∥H−1(Ωt).

The space C([0, T ];H−1(Ωt)) will be defined as the closed subspace of L∞(0, T ;H−1(Ωt))

constituted by the functionals �S such that its correspondingR belongs to C([0, T ];H−1(Ω)).

Let �u : �Q → R be a function and

�u(x, t) = u

(
x

k(t)
, t

)
, u : Q → R

then

�u′(x, t) = −k′(t)

k(t)
yi
∂u

∂yi

(
x

k(t)
, t

)
+ u′

(
x

k(t)
, t

)
. (10.21)

Let �u ∈ Lp(0, T ;L2(Ωt)), 1 ≤ p ≤ ∞, be such that ξ′ belongs to Lp(0, T ;H−1(Ω)),

where Uξ = �u. Let u = k−nξ, that is,

�u(x, t) = k−n(t)ξ

(
x

k(t)
, t

)
= u

(
x

k(t)
, t

)
.
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Then u ∈ Lp(0, T ;L2(Ω)) and u′ ∈ Lp(0, T ;H−1(Ω)). By (10.21) we have

⟨�u′(t), �α⟩ =
⟨
−k′(t)

k(t)
yi
∂u

∂yi
+ u′, β

⟩

where �α ∈ H1
0 (Ωt) and β(y) = kn(t)�α(k(t)y). Clearly, �u′ ∈ Lp(0, T ;H−1(Ωt)).

In particular, if �u ∈ Lp(0, T ;H1
0 (Ωt)) and u′ ∈ Lp(0, T ;H−1(Ω)) then

(�u′(t), �α)L2(Ωt) =

(
−k′(t)

k(t)
yi
∂u

∂yi
+ u′, β

)

L2(Ω)

with �α ∈ L2(Ωt). Clearly �u′ ∈ Lp(0, T ;L2(Ωt)).

We denote by L2(0, T ;L2(Γt)) the Hilbert space of function

�v : �Σ → R

such that there exists g ∈ L2(0, T ;L2(Γ)) verifying

�v(x, t) = k−n−1(t)g

(
x

k(t)
, t

)
,

equipped with the inner product

(�v, �w)L2(0,T ;L2(Γt)) =

∫ T

0

(�v(t), �w(t))L2(Γt)dt.

Remark 10.5 The unit normal vector �η(x, t) at (x, t) ∈ �Σ, directed towards the exterior

of �Q, has the form

�η(x, t) = {ν(y),−k′(t)(y, ν(y))}[1 + k′2(t)|(y, ν(y))|2]−
1
2 , y =

x

k(t)
.

In fact, fix (x, t) ∈ �Σ. Let φ = 0 be a parametrization of a part U of Γ, U containing

y = x
k(t)

. Then a parametrization of a part �V of �Σ, (x, t) ∈ �V , is �ψ(x, t) = φ( x
k(t)

) = 0. We

have

∇ �ψ(x, t) = 1

k(t)
{∇φ(y),−k′(t)(y,∇φ(y))}.

From this and observing that ν(y) = ∇φ(y)
|∇φ(y)| , the remark follows.

Let ν∗(x, t) be the x-component of �η(x, t), |ν∗(x, t)| = 1. Then by Remark 10.5, one

has

ν∗(x, t) = ν

(
x

k(t)

)
. (10.22)
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Then u ∈ Lp(0, T ;L2(Ω)) and u′ ∈ Lp(0, T ;H−1(Ω)). By (10.21) we have

⟨�u′(t), �α⟩ =
⟨
−k′(t)

k(t)
yi
∂u

∂yi
+ u′, β

⟩

where �α ∈ H1
0 (Ωt) and β(y) = kn(t)�α(k(t)y). Clearly, �u′ ∈ Lp(0, T ;H−1(Ωt)).

In particular, if �u ∈ Lp(0, T ;H1
0 (Ωt)) and u′ ∈ Lp(0, T ;H−1(Ω)) then

(�u′(t), �α)L2(Ωt) =

(
−k′(t)

k(t)
yi
∂u

∂yi
+ u′, β

)

L2(Ω)

with �α ∈ L2(Ωt). Clearly �u′ ∈ Lp(0, T ;L2(Ωt)).

We denote by L2(0, T ;L2(Γt)) the Hilbert space of function

�v : �Σ → R

such that there exists g ∈ L2(0, T ;L2(Γ)) verifying

�v(x, t) = k−n−1(t)g

(
x

k(t)
, t

)
,

equipped with the inner product

(�v, �w)L2(0,T ;L2(Γt)) =

∫ T

0

(�v(t), �w(t))L2(Γt)dt.

Remark 10.5 The unit normal vector �η(x, t) at (x, t) ∈ �Σ, directed towards the exterior

of �Q, has the form

�η(x, t) = {ν(y),−k′(t)(y, ν(y))}[1 + k′2(t)|(y, ν(y))|2]−
1
2 , y =

x

k(t)
.

In fact, fix (x, t) ∈ �Σ. Let φ = 0 be a parametrization of a part U of Γ, U containing

y = x
k(t)

. Then a parametrization of a part �V of �Σ, (x, t) ∈ �V , is �ψ(x, t) = φ( x
k(t)

) = 0. We

have

∇ �ψ(x, t) = 1

k(t)
{∇φ(y),−k′(t)(y,∇φ(y))}.

From this and observing that ν(y) = ∇φ(y)
|∇φ(y)| , the remark follows.

Let ν∗(x, t) be the x-component of �η(x, t), |ν∗(x, t)| = 1. Then by Remark 10.5, one

has

ν∗(x, t) = ν

(
x

k(t)

)
. (10.22)
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10.5 Proof of the Main Result

10.5.1 Weak Solutions and Solutions by Transposition.

In order to motivate the definition of weak solutions and solutions defined by transposi-

tion of the wave equation in �Q, we obtain some relations between functions. We consider

�u(x, t) = u

(
x

k(t)
, t

)
, �θ(x, t) = k−n(t)z

(
x

k(t)
, t

)

�v(x, t) = k−n−1(t)g

(
x

k(t)
, t

)
, �v : �Σ → R

One has

�u′(x, t) = −k′(t)

k(t)
yi
∂u

∂yi

(
x

k(t)
, t

)
+ u′

(
x

k(t)
, t

)
(10.23)

�θ′(x, t) = −nk−n−1(t)k′(t)z

(
x

k(t)
, t

)
−

− k−n−1(t)k′(t)yi
∂z

∂yi

(
x

k(t)
, t

)
+ k−n(t)z′

(
x

k(t)
, t

) (10.24)

and

�u′′(x, t)−△�u(x, t) = Lu

(
x

k(t)
, t

)
,

�θ′′(x, t)−△�θ(x, t) = k−n(t)L∗z

(
x

k(t)
, t

)

where L and L∗ were defined, respectively, in (10.4) and (10.5).

With the above functions we obtain formally the following results: The change of

variable x = k(t)y gives
∫ T

0

∫

Ωt

(�u′′ −△�u)�θdxdt =
∫ T

0

∫

Ω

Lwzdydt (10.25)

∫ T

0

∫

Ω

wL∗zdydt =

∫ T

0

∫

Ωt

�u(�θ′′ −△�θ)dxdt (10.26)

and by (10.22), ∫ T

0

∫

Γ

(δij − k′2yiyj)k
−2 ∂z

∂yj
νigdΓdt =

=

∫ T

0

∫

Γt

(δij − k′2k−2xixj)k
n+1 ∂�θ

∂xj

ν∗
i �vdΓdt.

(10.27)

The Green’s formula, the condition z(t) = 0 on Γ, the change of variable x = k(t)y and

the relations (10.23), (10.24) furnish the identity∫

Ω

[u′(t)z(t)− u(t)z′(t)]dy −
∫

Ω

2k′(t)

k(t)
yi
∂u(t)

∂yi
z(t)dy =

=

∫

Ωt

[�u′(t)�θ(t)− �u(t)�θ′(t)]dx.
(10.28)
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The Green’s formula the integration by parts on [0, T ] and the conditions z(t) = 0 on Γ,

u = g on Σ, yield

∫ T

0

∫

Ω

Lwzdydt =

∫ T

0

∫

Ω

wL∗zdydt+N(T )−N(0) + J (10.29)

where N(t) denotes the left side of (10.28) and J, the left side of (10.27). Then from

(10.25)-(10.29) we have

∫ T

0

∫

Ωt

(�u′′ −△�u)�θdxdt =
∫

Ωt

[�u′(T )�θ(T )− �u(T )�θ′(T )]dx−

−
∫

Ω0

[�u′(0)�θ(0)− �u(0)�θ′(0)]dx+

+

∫ T

0

∫

Γt

(δij − k′2k−2xixj)k
n+1 ∂�θ

∂xj

ν∗
i �vdΓdt+

+

∫ T

0

∫

Ωt

�u(�θ′′ −△�θ)dxdt.

(10.30)

Motivated by (10.30), we introduce the following problem

��������

�θ′′ −△�θ = �h in �Q,

�θ = 0 in �Σ,
�θ(0) = �θ0, �θ′(0) = �θ1 in Ω0

(10.31)

with data

�θ0 ∈ H1
0 (Ω0), �θ1 ∈ L2(Ω0), �h ∈ L1(0, T ;L2(Ωt)). (10.32)

We say that �θ is a weak solution of Problem (10.31) if

�θ ∈ C([0, T ];H1
0 (Ωt)), �θ′ ∈ C([0, T ];L2(Ωt))

and verifies
����������

−
∫ T

0

(�θ′, �α)L2(Ωt)dt+

∫ T

0

((�θ, �α))H1
0 (Ωt)dt =

∫ T

0

(�h, �α)L2(Ωt)dt,

∀�α ∈ L2(0, T ;H1
0 (Ωt)), �α′ ∈ L2(0, T ;L2(Ωt)),

�α(0) = �α(T ) = 0, �θ(0) = �θ0, �θ′(0) = �θ1.

Theorem 10.5 Let �θ(x, t) = k−n(t)z
(

x
k(t)

, t
)
. We have that if z is a weak solution of

(10.6) then �θ is a weak solution of Problem (10.31) and reciprocally. The data {�θ0, �θ1,�h}
and {z0, z1, h} are related by

�θ0(x) = k−n(0)z0
(

x

k(0)

)
(10.33)
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The Green’s formula the integration by parts on [0, T ] and the conditions z(t) = 0 on Γ,
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Ω
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where N(t) denotes the left side of (10.28) and J, the left side of (10.27). Then from

(10.25)-(10.29) we have

∫ T

0

∫

Ωt

(�u′′ −△�u)�θdxdt =
∫

Ωt

[�u′(T )�θ(T )− �u(T )�θ′(T )]dx−
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∫

Ω0
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+

∫ T

0
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(δij − k′2k−2xixj)k
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ν∗
i �vdΓdt+

+

∫ T

0

∫

Ωt

�u(�θ′′ −△�θ)dxdt.

(10.30)

Motivated by (10.30), we introduce the following problem

��������

�θ′′ −△�θ = �h in �Q,

�θ = 0 in �Σ,
�θ(0) = �θ0, �θ′(0) = �θ1 in Ω0

(10.31)

with data

�θ0 ∈ H1
0 (Ω0), �θ1 ∈ L2(Ω0), �h ∈ L1(0, T ;L2(Ωt)). (10.32)

We say that �θ is a weak solution of Problem (10.31) if

�θ ∈ C([0, T ];H1
0 (Ωt)), �θ′ ∈ C([0, T ];L2(Ωt))

and verifies
����������

−
∫ T

0

(�θ′, �α)L2(Ωt)dt+

∫ T

0

((�θ, �α))H1
0 (Ωt)dt =

∫ T

0

(�h, �α)L2(Ωt)dt,

∀�α ∈ L2(0, T ;H1
0 (Ωt)), �α′ ∈ L2(0, T ;L2(Ωt)),

�α(0) = �α(T ) = 0, �θ(0) = �θ0, �θ′(0) = �θ1.

Theorem 10.5 Let �θ(x, t) = k−n(t)z
(

x
k(t)

, t
)
. We have that if z is a weak solution of

(10.6) then �θ is a weak solution of Problem (10.31) and reciprocally. The data {�θ0, �θ1,�h}
and {z0, z1, h} are related by

�θ0(x) = k−n(0)z0
(

x

k(0)

)
(10.33)
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�θ1(x) = −nk−n−1(0)k′(0)z0
(

x

k(0)

)
−

− kn−1(0)k′(0)yi
∂z0

∂yi

(
x

k(0)

)
+ k−n(0)z1

(
x

k(0)

) (10.34)

(see (10.23), (10.24)).

Theorem 10.5 is showed by relating integrals on Ωt and Ω and using Theorem 10.2 and

(10.24).

The uniqueness of solutions of Problem (10.31) is a consequence of Theorem 10.5. We

also have that, since ∂θ̂
∂xj

= k−n−1 ∂z
∂yj

,

∂�θ
∂xj

,
∂�θ
∂ν∗ ∈ L2(0, T ;L2(Γt)),

∂z

∂ν
(y, t) = kn+1(t)

∂�θ
∂ν∗ (k(t)y, t).

(10.35)

Remark 10.6 Clearly we can change the data at time t = 0 by final data at t = T

in Problem (10.31) and obtain all the above results for the solution �θ of the respective

backward problem. In the sequel we introduce the solutions defined by transposition. Let

us consider the problem

��������

�u′′ −△�u = 0 in �Q,

�u = �v in �Σ,
�u(0) = �u0, �u′(0) = �u1 in Ω0

(10.36)

with data

�u0 ∈ L2(Ω0), �u1 ∈ H−1(Ω0), �v ∈ L2(0, T ;L2(Γt)). (10.37)

Motivated by (10.30) one introduces the following definition: We say that �u ∈
L∞(0, T ;L2(Ωt)) is a solution defined by transposition of Problem (10.36) if �u verifies

∫ T

0

(�u,�h)L2(Ωt)dt = ⟨�u1, �θ(0)⟩ − ⟨�u0, �θ′(0)⟩L2(Ω0)−

−
∫ T

0

∫

Γt

(δij − k′2k2xixj)k
n+1 ∂�θ

∂xj

ν∗
i �vdΓdt,

∀�h ∈ L1(0, T ;L2(Ωt)),

(ν∗ defined in (10.21) where �θ is the weak solution of the problem

��������

�θ′′ −△�θ = �h in �Q,

�θ = 0 in �Σ,
�θ(0) = 0, �θ′(0) = 0 in Ω0.
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Theorem 10.6 Let �u(x, t) = u
(

x
k(t)

, t
)
. We have that if u is a solution by transposition of

Problem (10.10) then �u is a solution by transposition of Problem (10.36) and reciprocally.

The data {�u0, �u1, �v} and {u0, u1, g} are related by

�u0(x) = u0

(
x

k(0)

)
(10.38)

⟨�u1, �α⟩ =
⟨
−k′(0)

k(0)
yi
∂u0

∂yi
+ u1, β

⟩
, �α ∈ H1

0 (Ω0),

�α(x) = k−n(0)β

(
x

k(0)

) (10.39)

�v(x, t) = k−n−1(t)g

(
x

k(t)
, t

)
(10.40)

The proof of Theorem 10.6 is obtained by the same argument used in the proof of (10.30).

For the initial conditions one uses the following result:

Remark 10.7 Let �u0 ∈ L2(Ωt) and u0(y) = �u0(k(t)y). Then

⟨
xi
∂�u0

∂xi

, �α
⟩

=

⟨
yi
∂u0

∂yi
, β

⟩
, �α ∈ H1

0 (Ωt), �α(x) = k−n(t)β

(
x

k(t)

)
.

To see this it is enough to make the respective integrations.

From Theorem 10.6 the uniqueness of solution of Problem (10.36) follows and by The-

orem 10.3,

�u ∈ C([0, T ];L2(Ωt)) ∩ C1([0, T ];H−1(Ωt)).

We observe that, in addition to (10.26), we have

∫ T

0

∫

Γt

(δij − k′2k−2xixj)k
n+1 ∂�θ

∂xj

ν∗
i ν

∂�θ
∂ν∗dΓdt =

=

∫ T

0

∫

Γ

(δij − k′2yiyj)k
−2 ∂z

∂yj
νi
∂z

∂ν
dΓdt.

10.5.2 Proof of Theorem 10.1.

Let us consider the system (10.3), that is,

�����������

�u′′ −△�u = 0 in �Q,

�u =

{
�v on �Σ(y0),
0 on �Σ \ �Σ(y0),

�u(0) = �u0, �u′(0) = �u1 in Ω0

(10.41)
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Theorem 10.6 Let �u(x, t) = u
(

x
k(t)

, t
)
. We have that if u is a solution by transposition of

Problem (10.10) then �u is a solution by transposition of Problem (10.36) and reciprocally.

The data {�u0, �u1, �v} and {u0, u1, g} are related by

�u0(x) = u0

(
x

k(0)

)
(10.38)

⟨�u1, �α⟩ =
⟨
−k′(0)

k(0)
yi
∂u0

∂yi
+ u1, β

⟩
, �α ∈ H1

0 (Ω0),

�α(x) = k−n(0)β

(
x

k(0)

) (10.39)

�v(x, t) = k−n−1(t)g

(
x

k(t)
, t

)
(10.40)

The proof of Theorem 10.6 is obtained by the same argument used in the proof of (10.30).

For the initial conditions one uses the following result:

Remark 10.7 Let �u0 ∈ L2(Ωt) and u0(y) = �u0(k(t)y). Then

⟨
xi
∂�u0

∂xi

, �α
⟩

=

⟨
yi
∂u0

∂yi
, β

⟩
, �α ∈ H1

0 (Ωt), �α(x) = k−n(t)β

(
x

k(t)

)
.

To see this it is enough to make the respective integrations.

From Theorem 10.6 the uniqueness of solution of Problem (10.36) follows and by The-

orem 10.3,

�u ∈ C([0, T ];L2(Ωt)) ∩ C1([0, T ];H−1(Ωt)).

We observe that, in addition to (10.26), we have

∫ T

0

∫

Γt

(δij − k′2k−2xixj)k
n+1 ∂�θ

∂xj

ν∗
i ν

∂�θ
∂ν∗dΓdt =

=

∫ T

0

∫

Γ

(δij − k′2yiyj)k
−2 ∂z

∂yj
νi
∂z

∂ν
dΓdt.

10.5.2 Proof of Theorem 10.1.

Let us consider the system (10.3), that is,

�����������

�u′′ −△�u = 0 in �Q,

�u =

{
�v on �Σ(y0),
0 on �Σ \ �Σ(y0),

�u(0) = �u0, �u′(0) = �u1 in Ω0

(10.41)
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where �Q is constructed with T > T0, T0 given (10.12). With (10.32)- (10.34) and (10.37)-

(10.39), we determine, respectively, the isomorphisms

G1{z0, z1} = {�θ0, �θ1} and G2{u0, u1} = {�u0, �u1}

Consider the operators

σ{u0, u1} =

{
u1 − 2k′(0)

k(0)
yi
∂u0

∂yi
,−u0

}
,

Λ{z0, z1} =

{
u′(0)− 2k′(0)

k(0)
yi
∂u(0)

∂yi
,−u(0)

}
,

where Λ is the isomorphism defined in (10.16), that is, z is the weak solution of the problem

��������

L∗z = 0 in Q,

z = 0 on Σ,

z(0) = z0, z′(0) = z1 in Ω

(10.42)

and u the solution defined by transposition of the problem

������������

Lu = 0 in Q,

u =




∂z

∂ν
on �Σ(y0),

0 on Σ \ Σ(y0),

u(T ) = 0, u′(T ) = 0 in Ω.

(10.43)

Since Λ is an isomorphism we have that for each {u1, u0} ∈ H−1(Ω)× L2(Ω) there exists

an unique {z0, z1} ∈ H1
0 (Ω)× L2(Ω) such that

Λ{z0, z1} =

{
u1 − 2k′(0)

k(0)
yi
∂u0

∂yi
,−u0

}
. (10.44)

Thus, if u is the solution of problem (10.43) constructed with {z0, z1}, we have

u(0) = u0, u′(0) = u1.

With the above operators we determine the isomorphism

Λ1 = G1Λ
−1σG−1

2 , that is

Λ1 : L2(Ω0)×H−1(Ω0) → H1
0 (Ω0)× L2(Ω0)

{�u0, �u1} �→ Λ1{�u0, �u1} = {�θ0, �θ1} (10.45)
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Let {�u0, �u1} ∈ L2(Ω0) ×H−1(Ω0). Thus, by (10.45), we determine {�θ0, �θ1}. With this

data we find the weak solution �θ of the problem

��������

�θ′′ −△�θ = 0 in �Q,

�θ = 0 in �Σ,
�θ(0) = �θ0, �θ′(0) = �θ1 in Ω0

(10.46)

and with {z0, z1} = G−1
1 {�θ0, �θ1}, the weak solution z of the problem

��������

L∗z = 0 in Q,

z = 0 on Σ,

z(0) = z0, z′(0) = z1 in Ω.

Next, we determine the solution defined by transposition �u of the problem

������������

L�u = 0 in Q,

�u =




∂z

∂ν
on �Σ(y0),

0 on Σ \ Σ(y0),

�u(0) = u0, �u′(0) = u1 in Ω

(10.47)

where {u0, u1} and {z0, z1} are related by (10.44). We have by the uniqueness of solutions

of problem (10.47) that �u = u, u the solution of (10.43) constructed with {z0, z1}. Therefore

�u(T ) = 0, �u′(T ) = 0.

Finally, from Theorem 10.6, it follows that �u(x, t) = �u
(

x
k(t)

, t
)
is the solution defined by

transposition of Problem (10.41) and �u satisfies the final condition

�u(T ) = 0, �u′(T ) = 0.

By (10.35) and (10.36), we have that the control �v has the form

�v =
∂�θ
∂ν∗ ,

�θ weak solution (10.46).

Thus, the proof of Theorem 10.1 is concluded.

Acknowledgement: We thank to Prof. E. Zuazua for his important remarks.
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[12] C. Fabre et J. Puel – Comportment au voisinage du bord des solutions de l’équation

des ondes, C.R. Acad. Sci. Paris, t. 310, Serie I, (1990), pp. 621-625.

[13] C. Fabre, J. Puel, E. Zuazua – Approximate controllability for the semilinear heat

equation Proc. Roy. Soc. Edinburgh, 125A (1995), 31-61. .

[14] H.O. Fattorini – Local controllability of a nonlinear wave equation, Math. Systems

Theory, 9, (1989), pp. 35-40.

[15] R. Fuentes – Exact controllability for temporally wave equation, Portugalia Mathe-

matica, v.51, pp. 475-488, 1994.

[16] R. Fuentes – Exact control for wave equations with variable coefficients, Thesis, Ins-
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de singularitées, J. Math. Pures et Appl. 68, (1989), pp. 215-259.

[19] R. Glowinski, C.H. Li, J.L. Lions – A numerical approach in the exact boundary

controllability of wave equation (I) Dirichlet controls: Description of the numerical

methods, Japan Appl. Math., (1990), pp. 1-76.
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Mathématiques, t. 302, (1986), pp. 443-446.
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Sci. Paris, 306, (1988), pp. 129-132.
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