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Preface

This book presents some results concerning existence of solutions and exact controlla-
bility for the wave equation in domains cylindrical and non cylindrical. There is one
chapter dedicated to the Timoshenko system.

It is opportune to register that it is employed in the Pos Graduate Courses of 7 Instituto
de Matematica - UFRJ.”

We acknowledge Professor Ivo Fernandez Lopes for reading the previous manuscrypt
and by his constructive remarks. We also register our thanks the ” Editor da Universidade

Estadual da Paraiba,” for the inclusion of this book in the collection of its publications.

Campina Grande - PB, October, 2013

The Authors






Introduction

This book is part of lectures given by one of the authors in 1992/93 on Partial Differential
Equations at Instituto de Matematica, UFRJ, Rio de Janeiro, RJ.

In order to fix the notation and terminology we will do a brief introduction to the
spaces W™P(Q). For a complete information of these subjects, the reader can look Lions
[32], Medeiros-Rivera [50].

In the study of strong solution, Section I, we used general methods which could be
applied even in the non linear case. However in the linear case using eigenvectors we
obtain an easier proof.

Let us represent by €2 a bounded open set of R” with boundary I'. By ) we represent
the cylinder Q2x]0,7[, T > 0 real number. For 1 < p < 400, we denote by L?(2) the space
of real functions v measurable in € such that the power p, i.e. |v|?, is Lebesgue integrable

in 2. This is a Banach space with the norm

lollney = [ o) do.

When p = oo, L*(£2) means the space of all essentially bounded real functions in €2, with
the norm:

|v]|00 = esssup |v(x)].
ze)

We prove that L>°(€2) is a Banach space.
When p = 2 we have a Hilbert space L?*(€) with the inner product

(1, v) = /Q w(@)o(z) da,

o = [ fote)d.

By C§° we represent the space of real function defined in €2, infinitely differentiable and

and induced norm

with compact support in Q. By D(Q2) we represent the space of C§°(€2) with the notion
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of convergence: ¢, and all its derivatives converge uniformly to ¢ and its derivatives in
K. A distribution on €2, as defined by Laurent Schwartz, is a continuous linear form 7" on
D(Q). Tts derivative of order o, DT, is defined, for each «, by

<DaT7 90> = (_1)|a\ <T7 Da90>7

for all ¢ € D(R2). Note that (T, ¢) is the evaluation of T in ¢, i.e. T(¢p).
By W™P(Q)) we represent the Sobolev spaces of order m, that is, the space of all real
functions v € LP(2) such that D € LP(Q2) for all |o| < m. In W™P(Q) we define the

norm:
i, = 3 / D*u() P da.

o <m
It follows that W™P(Q2) with this norm is a Banach space. By W;""(Q2) we represent the
closure of D(Q) in W™P(Q).

When p = 2, the space W™2(Q) is represented by H™(2), which is a Hilbert space

with the inner product
(u,v) = Z / D%u(x) - D% (x) dx
jaf<m €

and norm:

o= Y / D*v(a)? da.

laj<m

In particular, we use, frequently, in this book, the spaces H*(2) and H}(€2). We have

ov

’ 81‘,

HY(Q) = {vELQ(Q) eL2(Q),z'=1,2,...,n}

with the inner product

((u,v)) = / u(z)v(z)dx + / Vu(z) - Vu(z) dz,
Q Q
and norm:
o]f? = / o) de +/ V()2 dr.
Q Q
By V we represent the gradient operator. In HJ(£2) we obtain an equivalent norm given
by
ol = [ [9u(o)f da.
Q
Let us consider the Laplace operator A defined by the triplet { H}(Q), L*(Q); ((,-))}.

Its domain is, for regular T,

D(~A) = {v e L¥(Q); Av € LX(Q)} = HL(Q) N HA(SQ).
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When T is of class C? we prove that the norm H?(2) defined in Hj(Q)NH?() is equivalent

to the norm
oy = [ |dv(e)?da.
Q
that is, the norm defined by the Laplace’s operator. By this reason, we consider Hj(2) N
H?(Q) with the norm |v|a .
Given a Banach space X and a real number T > 0, we represent by LP(0,7; X), with

1 < p < o0, the space of vector functions v: 0, T[— X, measurable and such that ||v(t)][%
is integrable in 0, 7'[. In LP(0,7"; X) we define the norm:

T
lollrs = | NGO
As in numerical case we define L>°(0,7"; X') with the norm:
[|v] |z (0,7x) = esssup |[v(t)]]x -
0<t<T

We prove that LP(0,7; X), 1 < p < oo are Banach’s spaces.

Note that we represent the inner product and norm, respectively, in L*(Q2) and H} ()
by the notations: (-,-); |- |; ((+,-)) and || - ||.

We also appreciate the suggestions of Ricardo Fuentes about Chapter 8. To Wilson
Goes my thanks for the beautiful work of TEX.
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Epigraph

“... la troisieme, de conduire par ordre mes pensées, en commencant par les objects
les plus simples, et les plus aisés a connaitre, pour monter peu a peu, come par

degrés, jusqu’a a la connaissance des plus composés...”

René Descartes — Discours de la Méthode
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Chapter 1

Strong Solutions

1.1 Strong Solutions

This section is dedicated to solve the following boundary value problem:
Given

¢" € Hy(Q) NH*(Q); ¢' € Hy(Q) and f € L'(0,T; Hy (),

find a numerical function u: @) — R satisfying the conditions:

"—Ap=f ae in Q,
»=0 on X, (*)

¢(l’, O) = ¢O(x)> ¢/(l’, O) = ¢1(1’) on (L

Note that ¢’ is % and ¢(t) is the function ¢(t): z — ¢(x,t). Consequently ¢(x,0) can
be written ¢(0). Thus the initial data is ¢(0) = ¢° and ¢'(0) = ¢'. The following theorem

solve the problem.

Theorem 1.1 (Existence and Uniqueness) If ¢' € H}(Q) N H*(Q); ¢' € HJ () and
f e LY0,T; H (Q)), there exists only one function ¢: Q — R such that:

¢ € L>=(0,T; Hy(Q) N H*(Q)) (1.1)
¢ € L>(0,T; Hy(Q)) (1.2)
¢" € L'(0,T; L*() (1.3)

"—Ap=f ae in Q (1.4)
$(0) =¢" and ¢'(0) = ¢' (1.5)
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Proof: Let (w,)yen, (A)ven be, respectively, the eigenfunctions and the eigenvalues of

the spectral problem
(wy,v)) = Aj(w;,v) forall v e Hy(Q).

Approximated Problem. Let us consider the m-dimensional subspace of H} () N
H?(Q) denoted by V,, = [wy,ws, ..., wy,|, generated by the m-first eigenfunctions w,,,

v=1,2,...,m,.... Then, we propose the approximated problem:

Find ¢,,(t) € V,,,, such that:
(@ (1), 0) + ((Gm(2),v)) = (f(£), v) for all v € V.

(1.6)
G (0) = @2, converges to ¢° in Hj(Q) N H*(Q).
¢ (0) = ¢} converges to ¢' in Hy(Q2).

Remark 1.1 Observe that if ¢, (t) € V,, then
Om(t) = gi(tyw; (1.7)
i=1

where g;(t) for 1 < i < m, are determined by the equations (1.6)y. When we substitute
Om(t), given by (1.7), in (1.6)y we obtain, forv=w;, 1<j<m,

g; () + Xjgi(t) = (fywy), 1<i<m, (1.8)

which is a system of m ordinary differential equations of second order with constants
coefficients \; .

The initial conditions for (1.8) are obtained by the conditions (1.6)s and (1.6),. We
consider Hg () N H?(Q) with the equivalent norm defined by the Laplace operator, since
' is reqular. The approximations for ¢° and ¢' are:

m m

60, = (¢" w)w; and ¢l => (¢, wi)w;. (1.9)

=1 =1

Then the initial conditions for (1.8) are:

9;(0) = (¢",w;) and  g;(0) = (&', wy). (1.10)

The system (1.8) with initial conditions (1.10) has only one solution defined in [0, T].
Consequently the system (1.6) has solution ¢, (t) defined in [0,T]. In the next step we

obtain a priori estimates.
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First a priori estimate. Consider v = 2¢/ () in (1.6)2. We obtain:
i(|¢>’ (O + Nlem @) = 2(f (1), ¢, (1))
dt " " B TrmA
Integrating from 0 to ¢t < T, we get:
T t
GnOF + om0 < WP+ IS+ [ 1Fds+ [ 176 P ds
By Gronwall’s inequality, it follows:
1L O+ ||om(B)]]* < Cy for 0<t<T. (1.11)

Second a priori estimate. By the choice of (w,),en, it follows that —A¢! () € V.
Then it is correct to take v = —2A¢! (¢) in (1.6),, obtaining:

d
T IV, (O + [Agm(t)[?) = 2(V f (1), Vi, (1)).
Integrating this equality from 0 to ¢t < T, we obtain:
V6, (0 + [Adm () > < IV |> + |Ag), [P+
T t )
\V4 d Vv V! ds.
[ wrelas [0V )R s

By hypothesis |V f(s)| € L*(0,T), then by Gronwall’s inequality applied to the last ine-

quality we obtain:
Vo, (D)2 + |Apm(D)]? < Cy, for 0<t<T. (1.12)

Then from (1.11) and (1.12) we obtain:

A¢,, is bounded in L>(0,T; L*(2)) (1.13)
¢! is bounded in L*®(0,T; Hy(Q)) (1.14)

We extract a subsequence (¢,,),en of (¢ )men , such that:

Ay — €= A¢ weak star in  L>=(0,T; L*(Q)) (1.15)
¢, = ¢ weak star in  L>(0,T; Hy(Q2) and L>(0,T; L*(Q)). (1.16)

Remark 1.2 The first estimate gives ¢, — ¢ weak star in L>=(0,T; H}(2)), then in the
sense of distribution on Q). Therefore, Ad,, — A¢ in the sense of distributions on Q. By
(1.15) we obtain A¢,, — & in the sense of distributions on Q, then & = A¢. [ |



18

d
By (1.16) we obtain (¢/)(t),v) — pr (¢'(t),v) in D'(0,T) for all v € L*(2). Then, fix
m in (1.6), and consider the sequence ¢, as solution of the approximated problem (1.6)

and let © — oo. We obtain:

d , , _
o (¢ (t),v) — (AB(t),v) = (f(t),v)

in the sense of D'(0,T), for all v € V,,. By density it is true for all v € H}(Q) N H(Q).
In particular, for all v € D(Q2). Then we have:

—/OT/Q &' (t)vd dadt = /OT/Q A¢(t)vl dxdt = /OT/Q f(t)vl dxdt

for all v € D(?), 8 € D(0,T). By density of the finite sums of products vf, v € D(2) and
0 € D(0,T) in D(Q), we obtain:

_ / 1./ _ A _
/Qcﬁw dxdt /Q oY dxdt /wa dxdt
for all ¢ € D(Q). Then,
(@) = [ (80 -+ fyudadt,
Q

and it follows that the distribution ¢” is defined on Q by A¢ + f € L1(0,T; L*(2)). Then
we identify ¢” to a function of L'(0,T; L*(€2)) and still represent this function by ¢”. We

have:

JRCENE T

Q

for all ¢» € D(Q). Whence, Lemma of Du Bois Raymond implies:
"—Ap=f ae in Q.

Then we prove (1.1), (1.2) and (1.3) of the Theorem 1.1. [

To prove uniqueness, let ¢, g/g be two solutions in the conditions of the Theorem 1.1. It
follows that ¢ = ¢ — &;is solution of (" — A{ =0 a.e. in @, ¢(0) =0 and ¢’'(0) = 0. Since,
by (1.16), ¢’ € L>=(0,T; H}(Q2)) make sense the integrals

/Q "¢ dx — /Q ACC dz = 0.

d, , B
—(ICOF + <@ =0,
what implies, ( = 0 on Q. |

The solution ¢ obtained in Theorem 1.1 is called strong solution of the mixed problem

Whence,

(*), or for the linear wave equation.
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Theorem 1.2 (Energy Inequality) If ¢ is strong solution, then we have the energy

inequality

t
Vo' (1) + [Ap(t)* < [V [* + |A¢" + 2/ (Vf(s),V(s))ds. (1.17)
0
Proof: Taking v = —A¢/,(t) € V,,, in the approximated equations (1.6), we obtain:

VoL + [Adm(t)]* = [V, |* + |Ag)[* + 2/0 (Vf(s), Ve, (s)) ds. (1.18)

Let @ > 0 be an step function on |0,7[. In (1.18) take m = p, multiply both sides by 6
and integrate on [0,7]. We obtain:

/ IV (0)6(t) di + / AG,(B)P6(t) dt = / VoL Pa(t) dit

+/0 !A¢2\29(t)dt+2/ e(t)/o (vf(s)’v%(é,))dsdt.

0

(1.19)

By the convergences (1.15), (1.16) and the lower semicontinuity of the norms with

respect to the weak convergence, we obtain:
T T
[ wsorama<mm [ wooro i (1.20)
0 wJo
T T
| 1aswpoar <im [ 10,0 Po)as (1.21)
0 u Jo

Taking lim in both sides of (1.19), taking in account (1.20) and (1.21) and noting that

I
lim w + lim v < lim (u 4 v), we obtain:

/Oquﬁ’(t)\?e(t)dtJr/o |AG(1)|?0(t) dt <

T
112 02
g/o |V¢|6(t)dt+/ AG20(¢) di+ (1.22)

0

+2/0T (/Ot(Vf(s),ng’(s))ds) o(t) dt

Remark 1.3 Let be v € L'(0,T). We say that s €]0,T[is a Lebesque point of v, if for
h > 0 such that |s — h, s+ h[C]0,T[ then
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It is proved that if v € L'(0,T), then almost all points s of |0, T are Lebesgue’s points of
v.

Let us return to (1.22) and observe that the functions in the integrands of (1.22) are
LY(0,T). If s €]0, T, let us consider the step function 6y (t) = 6(t) on |s—h, s+h[C]0, T
and zero in the complement. Then 6, is permissible in (1.22). Substituting 6 by 6, in
(1.22), dividing both sides by 2h and letting h — 0 we obtain, for ¢ € [0, 7], because 6 > 0:

t
VO (OF +[A¢(t)]* < [V * +|A¢”|* + 2/ (V£(s),V'(s))ds (1.23)

0
a.e. in [0, 7. [
Before to prove another form of energy inequality (1.23) we prove a Gronwall’s inequa-

lity, Brezis [4] or Gomes [17].

Lemma 1.1 Let m € L'(0,T,R) such that m > 0 a.e. in |0, T[ and a > 0 real constant.
Suppose g € L>(0,T), g > 0 on |0, T verifying the inequality:

%g(t)2 < 2a% + 2 /Otm(s)g(s) ds
for all t €]0,T[. Then:
g(t) <2 (a + /Otm(s) ds) in[0,T).
Proof: For € > 0 let us consider the function ¢. > 0 in [0, 7] defined by:

Ye(t) =2(a+¢e)*+ Q/Otm(s)g(s) ds.

Whence,
d

dt
1
We have 3 g? < . or g(t) < V2+/1b(t). Since 1), is absolutely continuous and 1. (t) > 2¢2,

we have

e(t) = 2m(t)g(t).

d 1 du(h)
& O = S = VA

Integrating this inequality from 0 to ¢, we have:
t
V()% < . (0)/2 + \/5/ m(s)ds forall te[0,T].
0
Since g(t) < V24.(t)1/2, 0 <t < T, we obtain, from the above inequality, after ¢ — 0,

g(t)§2(a+ /O tm(s)ds) i [0,7]. (1.24)
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Corollary 1.1 If ¢ is the strong solution of Theorem 1.1, we have the inequality:

IVe'(t)| +A¢(t)| < C (\Vcbll +]A¢" +/O IVf(S)IdS) (1.25)

in [0,T7.
Proof: In fact from (1.23) we obtain

(IVe' ()] + 1As(1)])* < 2(|Ve'| + |Ae°))? +4/0 V() IV(s)|ds.
If we define:
g(t) = [V¢' ()] + |Ag(t)],

we obtain from the above inequality:

1 t
5 g(t)? < 2a* + 2/ m(s)g(s)ds,
0
where
a=|Ve'|+[Ad").
By Lemma 1.1 we obtain (1.25). |

Note that if the boundary T of  is C?, then the norm of H}(Q)N H?*(2) and that one
given by the Laplace operator are equivalents, as we already seen in Introduction.
We then obtain from (1.25) the inequality:

D' | oo 0,731 (2)) + 1l oo (0.7 3 (@) nm2(02)) < (1.26)
< C(H¢1HH3(Q) + H¢OH)H5(Q)0H2(Q) + HfHLl(o,T;Hg(Q)))-
[ |
Theorem 1.3 (Regularity) The strong solution ¢ = ¢(x,t) has the reqularity:
¢ € C°([0,TT; Hy () N H*(Q)) N CH([0, T; Hy(2)). (1.27)

Proof: The strong solution ¢, which exists by Theorem 1.1, is weak limit of a sequence

of approximations of the type:
O (t) =Y gi(t)w; (1.28)
i=1

with g;(t), 1 < i < m, solutions of the following system of ordinary differential equations:

g (t) + XNjgi(t) = (fywy), 1<j<m, (1.29)
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plus initial conditions:

9;(0) = (¢",w;) and gj(0) = (¢',w). (1.30)

The solution of this initial value problem is given, Lagrange’s method of variation of

constants, by:

g;(t) = (¢°, w; cos\/_t+\/_¢ ,w;) sin /At

,w;)sin A/ (t — ) ds,
\/— i) j

I<j<m.
Whence, the approximated solution is given by:

m

oz, t>—2[ )
\/_/ sm\/)\_l-(t—s)ds w; .

) sin \/_ Ait+

(1.31)

In the proof we suppose f regular to use Parseval identity. The general case L*(0,T; H}(9))

we approximated by regular case.



23

Step 1. ¢ € C°([0,T7; H3 () N H*(Q)).
In fact, it is sufficient to prove that (¢, )men is a Cauchy’s sequence in C°([0, T]; H}(Q)N
H?(€2)). Note that we consider in Hg(2)NH?(2) the norm defined by the Laplace operator.

In fact, let us consider m,n € N and suppose m > n. We have:

m 2 m 2
() — ouIE = || 3 sty = | > ai(t)Auy
1=n+1 % i=n+1 LZ(Q)

Noting that —Aw; = \;w; , we obtain by Pithagoras’ theorem:

[[6m(t) = (DIl = > lgi(t)Nil2-

i=n-+1

We have:

)i sin \/_H—

lgi (DX [E = (6", wi) i cos v/ Ait \/_
1 ¢ ) )
+ ﬁ/o (f(s), w)Nisin /X; (t — s)ds|3 <

Moo \/_/| i) 'RdS}Z‘

Applying twice the elementary inequality (a + b)2 < 242 + 20?

(6", wi)A

< {|(¢0, w;) Ai|r + ‘

2

O < AP w0+ 4]0} w) | +
. \ , ® (1.32)
+2(/ fs,wi—ids).
i (f(s) )\/)\—i
Note that ¢° = > (((bo, %)) % and by Pithagoras’ theorem
i=1 i)/ v i
02 S 0o Wi ’
191 = 3 |((5))
i=1 ¢ VIR
We know that (<¢0 I/l\jz>> (A(bo 7“/1\%) = —(A¢°, w;). Whence
% \4 %
Z [(A@°, w;)|* converges to zero when m,n — oo. (1.33)
i=n+1

For the second term of the right hand side of (1.32) we obtain:

-2 (%) 7

(2
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noting that ((, )) is the inner product in H}(€2). Then,

oo 2
W
o = 3| (o4 2))
2w,
we have,
i i Ai
((#3%)) = (709 J5) =
whence,
m \s 2
Z (gzﬁl,wi)\/;\_ converges to zero when m,n — oo. (1.34)
i=n+1 i

We know that f(s) € Hg(), then:

£ls) = i (o)) 7=

(2

It follows that:

o0

I =

i=1

2

Ai

(f(s), wi) x

Then, by Schwarz’s inequality:

T ) 2 T w: |
([ oenw 2efas) <7 [ i 2| as
Therefore, for the last term of the right hand side of (1.32), we have:
m T )\ 2 T m )\ 2
S [ uwwddab <v [0S luew e e o

i=n-+1 i=n+1
which converges to zero when m,n — oo, independent of ¢ in [0, 7.

By (1.33), (1.34) and (1.35) we have, from (1.32):

m
2
Z {gi(t))\i’R converges to zero when m,n — oo.
i=n—+1

Consequently, the sequence (¢,,(t))men is such that Inax, ||om(t) — dn(t)||y converges to
zero when m, n — 00 or (¢, )men is a Cauchy sequence in C°([0,T; H} (2) N H*(2)), then
convergent and its limit ¢, which is the strong solution, belongs to C°([0,T]; H}(£2) N
H?(Q)). |

Step 2. ¢! € C°[0,T]; Hy(2)).
The method is the same of Step 1. First we take the derivative with respect to t of the

approximated solution and obtain:

m

Ol t) =D gilt)wy,

i=1
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where
gi(t) = — (¢07wi)\/xSin \/)\_it + (¢*, w;) cos \/X-tjt
+ /t(f(s),wi) COS \/X(t — 8) ds.
0

We need to prove that (¢,)men is a Cauchy sequence in C°([0,T7]; H}(©2)). Suppose
m >n, m,n € N. We have:

16,,() = DI = || D gityws|| =] D gi(t)Vu
i=n+1 i=n+1 12(Q)
By Pithagoras’ theorem, we have:
m 2
(8 = 01 = Y |gh VA
i=n+1
We have, ) ,
dOVA[, < al(@ wonlg + 4|0 w) VA +
¢ 2 (1.36)
+2 {/ (f(s),wi)\/)\_l-ds} .
0
Note that \
(6%, w) i = (A%, wi); (&' (wi)V/ i = (¢17wi)ﬁ
Ai
and (f(s), wi) VA = (f(s)7wi)\/_/\—i'

Therefore, by the same argument used to obtain (1.33), (1.34) and (1.35) we have that
(¢, )men is Cauchy’s sequence in C°([0, T']; H}(Q2)) and it follows that ¢/ € C°([0, T]; HA(Q2)).
|
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Chapter 2

Weak Solutions

2.1 Weak Solutions

We consider now the mixed problem of Chapter 1, but under weak hypotheses on the

initial conditions ¢°, ¢

Theorem 2.1 Consider
¢° € HI(Q), ¢' € L*(Q) and f e L*0,T;L*(Q)). (2.1)

There exists only one function ¢: Q — R satisfying the conditions:

¢ € L*(0,T; Hy (%)) (2.2)
¢ € L™=(0,T; L*(Q)) (2.3)
L& 0,0)+ (0(1),0)) = (7(0),0) (2.4
in the sense of D'(0,T), for all v € HY(Q)
¢" € LY0,T; H () and ¢" — A¢p = f in L'(0,T; H(Q)) (2.5)
¢(0) = ¢", ¢'(0) =¢". (2.6)
The function ¢ obtained by Theorem 2.1 is called weak solution of the mixed problem

(*)-
Proof: We prove this theorem approximating the weak solutions by a sequence of strong

solutions. In fact, let us consider the approximations of ¢°, ¢! and f
) € Hy(Q) N H*(Q) such that ¢° — ¢° in Hy (),
¢t € H(Q) such that ¢} — ¢' in L*(Q), (2.7)
fm € C°([0,T); C*(Q2)) such thatf,, — f in L*(0,T; L*(2)).
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Taking ¢ , ¢1 and f,, as data, Theorem 1.1 of Chapter 1 says that there exists only
g m m

one function ¢,,: () — R satisfying the conditions:

bm € L=(0,T; Hy(Q) N H*(2)),
¢, € L(0,T; Hy(2)),

G € L(0,T5 L*(2)),

(), v) + (P (t),v) = (fm(t),v), in ]0,T7,
for all v € L*(0,T; H3(Q)),

Om(0) =@, 61,(0) = oy,

(2.8)

The next step consists in obtaining precise estimates for ¢,, , given by (2.8), such that
the limit is the solution claimed in Theorem 2.1.
Taking v = ¢/, (t) in (2.8)4, we obtain:

% (105 (O + llomOI*) = 2(f (1), ¢, (1))
or
T ¢
|0 O + [¢m I < |éml” + ll$m]® +/0 \fm(t)|dt+/0 | fin(8)] 17 ()] ds.
By the convergences (2.7), we get from the above inequality:
G0 + [6u 0 < K + [ 1) 61,51 ds
for all t € [0, T]. By Gronwall inequality it implies:
60, (O + [|om()|]* < C, forall t¢e[0,T]. (2.9)
From (2.9) follows the existence of a subsequence (¢, )nen such that:

¢, converges to ¢ weak star in  L*(0,T; Hy(£2))

(2.10)
@ converges to ¢ weak star in  L°>°(0,T; L*(Q2))
By (2.8), we have:
d
7 (@n(0):0) + ((9n(1),0)) = (fult), v) (2.11)

for all v € H}(Q). Multiplying both sides of (2.11) by # € D(0,T) and integrating by
parts, we obtain:

T

0

- [[@oorwis [ o= [ Goomae e
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for all v € H}(Q). Taking the limit in (2.13) when n — oo, taking in account (2.10) and
(2.7)5, we obtain a function ¢:  — R such that:

¢' € L<(0,T; Hy (),

¢' € L=(0,T; L*(Q)),

y (2.13)
- (@ (1), 0) + ((6(t), ) = (f(t),v)

in D'(0,T), for all v € Hy ().

We will prove that ¢” € L'(0,T; H~1(Q)). In fact, from (2.12), when n goes to infinity,

we obtain:
_ /0 (&(8), )0 (1) dt + /O (—AG(t), v)0(t) dt = /0 (F(t), v)0(t) dt (2.14)

for all v € Hj(2) and 6 € D(0,T). Then, defining g(t) = f(t) — A¢(t) € H (), we
obtain from (2.14):
T T
—/ &' (6)0'(t) dt :/ g(t)o(t) dt. (2.15)
0 0
By (2.2) and (2.3) it follows that ¢',¢g € L*(0,T; H~'(2)) and satisfies (2.15). Then by
Temam [66] Lemma 1.1 it follows that:

t

d(t)=¢ +/0 g(s)ds, &€ H'(Q) constant. (2.16)

Whence
¢ € C°([0,T); H1(Q)). (2.17)

By (2.16) we obtain:
(¢",0) = (g,0) forall 6e€D0,T),

what implies:
¢" € L'(0,T; H'(Q))

and ¢" = g in L*(0,T; H*(Q)) that is,

¢ —Ap=f in LY0,T;H Q). (2.18)

To complete the proof we need to verify the initial conditions and the uniqueness.

First, let us prove that uw(0) = u. In fact, we have:

Om(t) = ¢m(0) + /Ot O (s) ds. (2.19)
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Taking norm in L?(Q) of both sides in (2.19), we obtain:

¢ is bounded in  L>®(0,T; L*(R)). (2.20)
Then, there exists a subsequence (¢, ),en such that:
T T
/ (¢, (t),v)0'(t) dt converges to / (o(t),v)0'(t) dt (2.21)
0 0

for all § € C1([0,T1]) such that #(0) = 1 and 6(T) = 0. From (2.10)5 we have:

/0 (6L(1), 0)0dt  comverges to /0 (&/(1), v)0 dt (2.22)

for 6 € C*([0,T]), 6(0) =1 and 6(T) = 0.
By (2.21) and (2.22) we obtain:

/o d[(%() v)0]dt converges to /o %[(gb(t),v)@]dt

or (¢,(0),v) converges to (¢(0),v). Note that ¢(0) make sense. We know that (¢,(0),v)
converges to (¢° v) for all v € H}(Q). Then ¢(0) = ¢°. |

We prove now that ¢'(0) = ¢'. In fact, let be § > 0 and consider the function 0
defined by:

by i o<t<s
Os(t)=| 0

0 if 0<t<T
which belongs to H'(0,T). Multiplying both sides of the approximated equation (2.8)4 by
05(t) and integrating by parts we obtain:

0 6
—<¢;6<o>,v>+§ [t [ .o -

(2.23)
- [,
0
for the subsequence (¢,),en obtained from (2.20). If v — oo in (2.23) we get:
5 5

5/ o) dt +/0 (6(2), v))6s dt :/0 (F(t), v)0s dt. (2.24)
Letting 6 — 0 in (2.24) we obtain (¢/(0),v) = (¢°,v) for all v € H}(Q) or ¢(0) = ¢! in
HL(Q). n

To prove uniqueness, let be ¢ and qg two weak solutions given by Theorem 2.1. Then

w=¢— $ is weak solution of
w' —Aw=0 on Q,
w=0 on X, (2.25)
w(0) =0, w'(0)=0.
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Note that w” € L'(0,T; H'(Q)) and v’ € L>(0,T;L*(Q)), what does not permit to
consider (w”,w'), duality between H'(Q) and H} (). Therefore there exists a method,
cf. Visik-Ladyzhenskaya [69], which consists in define a new function v, from w, such that
€ L®(0,T; Hy () and the energy method works. In fact, for 0 < s < T let us define:

—/w(a)do if 0<t<s,
P(t)=| e
0 if s<t<T

where w is an weak solution of (2.25). The function ¢» € L*(0,T; H}(Q2)), then makes

sense: .
/ (w" — Aw, ) dt = 0. (2.26)
0

Let us consider

w( = [ " w(o) do.

Whence,

U(t) = wi(t) — wi(s)
and

P(t) = wy(t) = w(t)
We have:

/0 " ) do = (w/(s), 1(s)) — (w'(0), $(0)) — / (! ) do.

Since ¥(s) = w'(0) = 0 we obtain:

/ (" Y dor = —% w(s)[2. (2.27)
0
From (2.26) and (2.27) we obtain:
—% lw(s)]? + /Os((w, ))do = 0. (2.28)
But, ((w,v)) = ((¢',v)) = %% [|2(t)]|>. Then, from (2.28) it follows:
w(s)]* + [[4(0)]]* =0
proving that w(s) = 0 for all s € [0,T]. [ |

Theorem 2.2 (Energy Inequality) If ¢ is the weak solution obtained in Theorem 2.1,

then we have the energy inequality:

'O + le@OI* < [¢"* + (16" + 2/0 (f(s).¢'(s)) ds (2.29)

a.e. in[0,T7].
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Proof: From (2.8), with m = v, taking v = ¢/,(t) we obtain:

[0, (O + (16 (W11 < 16, 1* + (16511 + 2/0 (f(5), ¢l,(s)) ds.

By the convergences (2.10) and the same argument used in the proof of Theorem 1.2,

Chapter 1, we obtain the inequality (2.29). [ |

Corollary 2.1 If ¢ is the weak solution which exists by Theorem 2.1, we have the inequal-
1ty

&0+ o)l < C (|¢>1| + 11l +/0 |f(8)|d8) (2.30)
in [0, 7).

Proof: The same argument used to prove Corollary 1.1, of Theorem 2.1 of Chapter 1. B

From the Corollary 1.1, we obtain:

&'z 02 () + 1|9l Loeommmp () <
< O(10' 2@ + 110° |20y + 11 0/mi222)

Theorem 2.3 (Regularity of Weak Solutions) The weak solution ¢ has the following
reqularity:

¢ € C°([0, T); Hy (€2)) N C([0, T]; L*(2)). (2.31)

Proof: Let (¢,).,en be the sequence of strong solutions that approximate the weak solution

¢. Then, if m,n € N, m > n, we have:
(P () = (1), v) + (P (t) — Pu(t),v)) = (fin(t) — ful(t),v)
for all v € L?(0,T; H}(Q2)), by (2.8),. Taking v = ¢/, (t) — ¢,(t), we obtain
d
= (1) = G (O + [|om(t) — ou(B)]]?) <
< | fn(t) = @) + 1 f(t) = ful®)] |60, (F) — &L (1)
Integrating, we obtain
|61, (1) — 6, ()7 + [|dm (t) — n(B)]]* <
<0 (16— b+ Nt~ I+ [ 11nl0) - S at)
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By convergence (2.7) it follows, from the above inequality, that

/ /
max, |pr,(t) — @l (t)]  converges to zero when m,n — o0

max, ||om(t) — dn(t)|| converges to zero when m,n — oo

Then, (¢,),en is Cauchy sequence in CY([0,T]; Hi(Q2)) and (¢,),en in C°([0,T]; L*(€2)).
This implies that
¢, converges to & in C°([0,T); H3(2)) (2.32)
¢, converges to ¢ in C*([0,T]; L*(Q)) .

It follows by (2.10), that & = ¢, ( = ¢, then we have the regularity (2.31).
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Chapter 3

Hidden Regularity for Weak

Solutions

3.1 Hidden regularity for weak solutions

In this section we study behavior of the normal derivative of the weak solution ¢ at the
boundary Y of the cylinder Q).

Consider a Hilbert space X with inner product (-,-) and norm |- |. If v € L*(0,T; X)

and the weak derivative o' € L?(0,T;X), then v € C°([0,T]; X). It then follows that

makes sense to define:
Hy(0,T; X) = {ve L*0,T;X),v" € L*(0,T; X); v(0) = v(T) = 0}

with inner product

((u,0))o = / (ult). o(t)) dt + / (u/ (), 0/ (£)) .

This is a Hilbert space.
By D(0,T; X) we represent the space of vector functions ¢: |0, 7[— X, with compact

support in ]0,7[, infinitely derivable with the usual notion of convergence defined by
Schwartz cf. Lions [32] or Medeiros-Miranda [48]. We represent by H~'(0,T; X) the dual
of H}(0,T; X). We have the inclusions:

D(0,T; X) C Hy(0,T;X) C L*(0,T;X) Cc H'(0,T; X) c D'(0,T; X).

By D'(0,T; X) we represent the dual of D(0, T; X) and we identify L?(0,T; X) to its dual.

The above inclusions are continuous and each space is dense in the following. We prove



36

that if v € L*(0,T; X) then the weak derivative v' belongs to H~1(0,T; X) cf. Miranda
[61].

When ¢ is an weak solution, cf. Chapter 2, then ¢ € L*(0,T;L*(Q2)). Then ¢" €
H=Y(0,T; L*(Q)). Therefore, —A¢ = f — ¢" € L*(0,T; L*(Q)) + H*(0,T; L*(2)). When
I' is regular this implies that:

¢ € L0, T; H*(Q)) + H Y0, T; H*(Q))

and the normal derivative of ¢ has the regularity:

% € LY(0,T: H¥(T)) + H™\(0,T; H}(I). (3.1)

From (3.1) does not follows that ? belongs to L?(0,T; L*(T")) and is bounded in this
v

0
space. We shall prove, by method of multiplies, that, in fact, a_gf) is bounded in the norm
v

0
of L*(0,T; L*T)). By the reason that this regularity for a—¢ does not comes from the
v

properties of the weak solution ¢ given by Theorem 2.1 of Chapter 2, is that Lions [37]

0
called it Hidden Regularity of a—¢ This regularity was proved by Lions, first time, in
v
1983 in the reference [34].

Lemma 3.1 Let be v = (v, 1, ...,1,) the vector field of exterior normals to I'. Then
there exists a vector field h = (hy, ha, ..., hy,) € [CH(Q)]" such that

hi=v;onl for 1=1,2,...,n.

Proof: We know by Sobolev’s embedding theorem that for m > 1+ g we have H™(§2) C

CH(Q) continuously. The trace operator 7y is a bijection between H™(€2) and H™ 2 ().
Therefore, if v, € H™ 2(I') there exists by, € H™(Q) C C'(Q) such that yohy = 1j,. W

Lemma 3.2 If ¢ € HL(Q) N H%(Q), then

gj =y % on I’ (3.2)
0\
Vol* = (5) : (3.3)
Proof: Let us prove (3.2), that is, we prove that:
o¢ o9

Odl’ =

y._
r 0x; r Ov

gdl’ for all 6 € D(I).
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In fact, let be & € C?(Q) such that y,¢ = #. Such ¢ exists by the embedding H™(Q) C
— 2
C?(Q) for m > 2+= and the trace theorem. Let be (hy)i<j<n the vector field of Lemma 3.1.
n <k<

From Gauss’formula, we obtain:

a 0 0
| 5 5 msedz = [ ngar. (3.4
The integral on the right hand side of (3.4) is
. 90
Vi g 16 AT

because ¢ € H}(Q2) N H*(Q). Whence,

g 0 99 o))
/axz o (oh;€) da /F B, D€ dl = /F a%vﬂdl“

because h; = v; and £ = 6 on I', by definition. Addmg the above equality from 7 =1 up

to 7 = n, we obtain:

2/ 3o, axj (oh;€) dx—Z/VZ v,0dr.

By application of Gauss lemma to the left hand side, we obtain:
o 0 [9J0)
h;€) dx =

q 0x; 83:] ($h;€) r Oz;

Adding from j =1 to j = n, we obtain:

¢ 0dl' = /yi%ﬁdl“
r al’l r al/

for all # € D(I). [

01/]2 dl.

To prove (3.3) it is sufficient to consider

9 06 _ 06 0
Y ow,  or Oz, O

= Vgl

Note that repeated index means summation.

Lemma 3.3 Let (q)1<p<n be a vector field such that q, € CYHQ) for 1 < k < n. If
(Dn)nen 15 a sequence of strong solutions of (*), cf. Chapter 1, then, for each n € N it is

1 b0\’ , Dpn g
E/Ethk ( ;}i) dl'dt = (¢n<t>7% gxit))

0

true the identity:

0
5 | g 1600 - |v¢n<t>|2] dadt + (3.5)
8qk Ekbn 8%

where g, € C(Q), f0r1<k<n
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Proof: We use the notation

x = (ento o 2520)

On

9¢n(T)

€ L?*(Q) because ¢, is strong solution, see Chapter 1.

Note that
ote aqka

g 0

O
Then it makes sense multiply both sides of ¢! — A¢,, = f,, a.e. in Q, by ¢ i and

integrate on (). We have:

/ &0 / Abnge 227 dudt / g 22 2 dud
o o Do

where double index means addition on 1 < k < n.

Analysis of / Adnqs % dxdt.
Q &Uk

To make easy the notation we use ¢ instead of ¢, . We obtain:

—/ A¢Qk—dxdt / /A¢Qk—dxdt

By Gauss’formula we obtain:

% 0 0¢ ¢
o [ [soe (o )

We have:

o9\  0¢ o (0
Ve V( oer k)_ami%ﬁ_l‘k(@aci) +

+8¢8qk 9 1 9 [0 2+
ox; 0x; 3xk 2 % 5 th o0x;
99 Oqr 0 1 o 00 Oqr 09
Ox; Ox; Ox 2 G 6xk Vol + Ox; Ox; Oxy,

By (3.9) we modify the last integral in the right hand side of (3.8) obtainning:

0 0 0
o2t 20,2

1 dq. 0o 0O
i3 [ oo (Vofar+ [ L2020,
2 9] axk

q Ox; Oz Ox;
By Gauss lemma, we obtain:

1

a 2 _1 2
§/Q%a—xk|v¢’ dx—Q/Qk’V¢‘ v d F—

o - |V da

Oy,

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Note by Lemma 3.2, |V¢|* = % and — 0¢ =1 %9 Consequently, substituting (3.11)
ov oxy, v
10,71

in (3.10) and integrating on , we obtain:

2
/ACka dl’——l/quk (%) dl'dt —
2 Jx v

5 Su 06 06 (3.12)
_ 2| Y% 2 qk
&Uk Vo|* dxdt + o, _O.rk oz, dxdt.
Analysis of / " qu, 9 dxdt.
Q 81Ek
We have: 5 . 5
/ " qi 99 dzdt = / / " qr. 9% dxdt.
Q a[Bk 0 Q &vk
We have:
. (% 09
¢ - @ 5 dt = cb dxdt + cbqk
0 s T awk
Whence,
U a¢ _ / agb(t) g 1 (3 /2
/Qﬁb k Bz, dxdt = (gzﬁ (t) - q oo )|, 2 /qu . ¢ dxdt. (3.13)

Note that ¢’ € C°([0,T]; Hy(£2)), by regularity of strong solutions, cf. Chapter 1. Then,

d ) o dk 2 _

It follows from the above equality that:

1 d Ok
= — ¢ dwdt = .
/ . axk ¢“ dzdt. (3.14)

From (3.14) we obtain from (3.13):

99(t)
! —d dt = | ¢'(¢
Substituting (3.12) and (3.15) in (3.6) we obtain (3.5), after substituting ¢,, instead of ¢.
|

T
94k

3 ), o ¢ dadt. (3.15)
0

We define the energy associated to ¢, by

Bu(t) =5 [ (@200 + 19 0n(0)F)
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If t =0, we have: |
EA0) = 5 [ (6hP +IV6lP) do

From the energy inequality (3.17), Chapter 1, we have:

l%ﬁﬁgC(EA@41ATU@M$>. (3.16)

Evidently a similar inequality is true for weak solutions.

Oy,
As a consequence of the identity (3.5) of Lemma 3.3, we obtain a key estimate for ¢
v
on Y. In fact, take g = hy the vector field of Lemma 3.1. Then, from (3.5) we obtain:

9én dth (|¢ ? = |V¢n|?) dxdt +

by
X — — .
+X + /Q %o Bo. Do dwdt j ful 7 dudt

3hk

(3.17)

Since hy, € C*(Q) and f, € C°([0,T]; C*(Q2)), look Chapter 2, we have:

! ’/Q Ohy, (W 2 — |Vy| )d.rdt‘ < CEL(1),

[l <3 [ () e cmin
Tk

where C' represents different constants

dccdt‘ < C/ Vo, |* dedt < C E,(t).
Q
By Schwarz and inequality 2ab < a? 4 b? we obtain:

| X] <2 sup
0<t<T

(do;(t),hk (%)—m)‘ =C 2, )

Oxy, 0<t<T

Then, by (3.16) the inequality (3.17) becomes:
L[ (96 !
1 / drdt < ¢, ( B(0) + / £u(s)] ds (3.18)
2 Js \ ov 0

Ey = E(0) = %/Q (|¢']? + |V@']?) da. (3.19)

where

From (3.18) it follows that the sequence (%) is bounded in L?(X). Then there
v

exists a subsequence, still represented with the same index, such that:
O¢

8_n converges toy weakly on L?*(%) (3.20)
v
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and

IX|r2(z) £ lim

n—oo | OV

' In

L2(3%)
We choose (¢, )nen as the sequence of strong solutions which approximate the weak solution

¢ as done in Chapter 2. Then we can formulate the hidden regularity by the following.

Theorem 3.1 (Hidden Regularity) If ¢ is the weak solution of (*), Chapter 1, then
we have:
9¢

= € LA(%) (3.21)

/E (%)Zm& <C (Eo+/OT|f(s)|ds> : (3.22)

Proof: To prove this theorem, it is sufficient to show that the limit x obtained in (3.20)
0
is equal to a_gb Then (3.18) implies (3.21).
v
9¢

In fact, let us prove that y = v We know the weak solution ¢ is the weak limit of
the approximated strong solution (¢, ),en, cf. Chapter 2.

Note that 7 is the trace of the normal derivative. We need to prove that v1¢,, — v1¢
in a topology that implies the convergence in L?(3).

We begin observing that:

~A¢p = fo=¢! in D0, T;H Q). (3.23)

n

We have f, € C°([0,T);CY(2)) and ¢/, € L*(0,T; H}()). Then, exists z,, w, in
L*(0,T; H () N H?(2)) such that:

—Aw, = foand  [|wn|] 2051 @02 ) < Clfalr2@):

/ , (3.24)
— Az, = ¢, and ||Zn||L2(o,T;Hg(Q)mH2(Q)) < C|¢n|L2(Q)
by results of elliptic equation. By (3.24) we change (3.23) obtaining:
~A¢, = —Aw, — (Az,)" in D(0,T; H(Q)). (3.25)

We will prove that (3.25) implies:
bn = —w, — 2z, in D0, T; H(Q)).

In fact, by (3.25), for each 0 € D(0,T) we have:

T T T
—/ A0 dr = —/ Aw,0 dx + / Az,0/ dt in H Q).
0 0 0
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We know that A € L(H}(Q), H*(Q)), we obtain:

T T T
—A (/ ¢n0dt) =A {—/ wnedt+/ 200 dt} )
0 0 0

By the uniqueness of Dirichlet problem we obtain:
T T T
/ On0 dt = —/ wy,0 dt +/ 2,0 dt in H'(Q),
0 0 0
for all # € D(0,T), that is,
bn = —w, — 2, in D0, T; H*(Q)). (3.26)
But, since z, € L*(0,7;H?(Q)) it implies that 2z, € H-1(0,T; H*(Q?)) and vz, €
H=Y0,T; HY*(I)).
Vip = =W, — 1z, in HYH0,T; HY*(I)). (3.27)
By (3.24);, since f, — f in LY(0,7;H'(Q)) or f, is bounded in L%*(Q), it implies
\|wn||L20,7;12(02)) is bounded. Consequently, there exists a sequence (wy, )nen , such that
w, =1 weak in L*(0,T; H*(Q)).
Note that Aw, = —f,. But f, — f in L'(0,T; H;(2)) and if w is such that Aw = —f,
we obtain ¢ = w. From the continuity of the trace v; we obtain:

Tw, = yw  weak in  L*(0,T; HY*(I)). (3.28)

By (3.24),, since ¢/, is bounded in L?(Q), we obtain, by similar argument, a subsequence
(2n)nen such that
Y2m =z in L*0,T; HY*(T)). (3.29)

We prove that
2, =32 weakin  H N0, T; HY/*(T)). (3.30)

Note that by (3.24) w and z are solutions of Aw = —f and Az = —¢' with ¢’ weak limit
of ¢! where ¢ is the weak solution. By —A¢ = f — ¢” in D'(0,T; H(Q)), we obtain
¢=—w—2" and y,¢ = —yyw — 12 in H1(0,T; H/*(T')). We have by (3.28) and (3.29)

'71¢n = —MWn — ’717«/; - MW — ’71Z, = ’71¢ n H_1<Oa T; HI/Q(F))

or
(V1 Pn, vy = (N,v) forall ve Hé(O,T;Hl/Q(F)).

We obtained by (3.20):
(Y10n,v) — (x,v) forall ve L*0,T;L*T)).

Since HL(0,T; HY?(T)) c L*(0,T; L*(T")) we have y = y1¢. [
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Chapter 4

Ultra Weak Solutions

4.1 Ultra Weak Solutions

In this section we are interested in the study of the non homogeneous boundary value
problem:
2 —Az=0 in Q,
z=v on X, (4.1)
2(0)=2° Z(0)=2' in Q
when 2°, 2! are not regular as in Chapter 1 and 2. This type of problem was analysed, first
time, in Lions-Magenes [43], cf. also Lions [39]. One of the questions is an appropriate
definition of what we understand by solution of (4.1). As the initial values 2°, 2! are
not regular, we define the solution of (4.1) by the so called Transposition Method, as
proposed in Lions-Magenes op. cit. Here we follows an heuristic method in order to find a
natural definition of what we will call ultra weak solution as defined by Lions-Magenes.
In fact, multiply both sides of the equation (4.1); by a function § = 0(z,t), x € Q, t €]0,T]
and integrate in (), formally, by parts in .
T
/O/Qz(e”—AH) dxdt—l—/gz'(x,T)G(x,T) dr —

—/Qz'(x,O)Q'(x, 0) dx—/z(ac,T)@'($,T) dx+/z(x,0)9'(x,0) dr — (4.2)

Q Q
T T
—//%dedt+//%zdth:0.
0Jr aV 0Jr 3V
We have no information, up to know, about z(z,T), z/(x,T) and = Then, we choose

v
0 = 0(x,t) such that

O(z,T)=0, &(z, T)=0 and 6(z,t)=0 on . (4.3)
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Whence for this choice of 8 = 6(z,t), the equality (4.2) turns out:

(2,0" — AG) = —(2°,0'(0)) + (2, 0(0)) — <%,v> (4.4)

where (-, -) represents different pairs of duality.
The definition of ultra weak solution, by transposition method, will be given as a
functional defined by the expression (4.4). Then we will see that is natural to choose

0 = 0(x,t) as the weak solution of the backward problem:

0 —AN0=f in Q,
f=0 on X, (4.5)
O(T)=0, 0(T)=0 in Q.

If we take f € L'(0,T; L*(2)) and consider the change of variables T — ¢ instead of ¢ in
(4.5), then (4.5) is a particular case of the problem studied in Chapter 2 for weak solutions.
Then we can apply to 0, weak solution of (4.5), all the conclusions of Chapters 2 and 3.

Then, we have:
0 € C°([0, T]; HL()) N CY([0,T]; LA(Q)),
v (4.6)
o € L (%).

By Chapter 2, Corollary 2.1, inequality (2.30), since #° = ' = 0, we obtain:

0| oo 0,722 (2) + 1101 oo 0,15m12 ) < ClIf L2 0.1:22(02) - (4.7)

By Chapter 3, Theorem 3.1, we obtain:

e 12w,

ov
%
ov

(4.8)

< Ol fllzro.1;22(9)-
L2(%)

0
As a consequence of (4.6) we have §' € L*(Q), 6(0) € H(Q2) and % € L*(X). Then,

in order to ensure that the right hand side of (4.4) makes sense it is sufficient to choose:
0 2 1 -1 2
20 e L*(), 22 € H () and wve L (%). (4.9)
Motivated by the expression (4.6) and by the above considerations, for each set {2°, 2!, v}

in the class (4.9) is well defined the functional S on L'(0,T; L*(Q)) by:

(S, ) = —(2°,0'(0)) + (=1,0(0)) — : % vdldt (4.10)

for all solution @ of the problem (4.5).
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From the estimates (4.7) and (4.8),, for the weak solution 6 of (4.5), we obtain, from
(4.10):

168, )1 < 12210 0)] + 112 | -2 10O + [T ]| oy ol <

< C(|2° + 12 -1y + ol Lze) 1 f 100200 -

(4.11)

Therefore, S: L'(0,T; L*(Q)) — R, defined by (4.10), is a linear form which is contin-
uous by (4.11). Tt follows that S is an object of L>(0,T; L*(f2)), the topological dual of
LY(0,T; L*(Q)). Furthermore,

1] e o,ms220)) < C(12°] + |2M | 5-10) + V]| 22¢)) - (4.12)

Definition 4.1 For {z°, 2} v} € L*(Q) x H1(Q) x L*(X), we call ultra weak solution of
the non homogeneous mized problem (4.1), a function z € L>(0,T; L*()) satisfying the

condition:

/ zf dedt = —(2°,6(0)) + (z*,0(0)) — / 99 vdldt, (4.13)
Q » 51/
for all f € LY0,T; L*(2)), with 0 solution of the backward problem (4.5).

We say that the ultra weak solution z of (4.1) is defined by transposition. For this

reason, we sometimes call it solution by transposition instead of ultra weak solution.

Theorem 4.1 (Existence and Uniqueness) FEzists only one ultra weak solution z of

the non homogeneous mized problem (4.1). Furthermore, z satisfies:
|2llz=osz2)) < C(1° + (12 m-10) + V]l r2sy)- (4.14)

Note that the constant C' in (4.14) depends only of 7" > 0 and the vector field (hy)ren
introduced in Chapter 3.

Proof: The existence is a consequence of (4.10), (4.11) and Riesz representation theorem
for the objects of L>(0,T; L?(€2)) dual of L' (0, T; L?(€2)). The uniqueness is a consequence
of Du Bois Raymond’s Lemma (cf. Medeiros-Miranda [48]). [ |

Corollary 4.1 The linear function {2°, 2, v} — z, from L*(Q) x H Y(Q) x L*(X) into
L>(0,T; L*(R2)) is continuous, where z is the ultra weak solution of (4.1) with data 2°, 2",

V.
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In the applications it is important to know the regularity of the ultra weak solutions

as we have seen in the strong and weak cases.

Theorem 4.2 (Regularity of Ultra Weak Solutions) The ultra weak solution z of
(4.1) belongs to the class:

2 € C°([0,T; L*(Q)) N CH([0, 7] H~H(Q)) (4.15)
and satisfies the estimate:
120,220y + 12|10, rsm-1(0)) < CUZ°) + 112 -1 + V]2 (4.16)

where C' > 0 is a constant which depends only of T and the vector field (hy)gen -

Proof: We divide the proof in two parts. In the first we prove regularity for z and then

for 2.

Step 1. Let us recall, first of all, some results of regularity for strong solutions. As we
have proved in Chapter 1, Corollary 1.1, from inequality (1.25), if ¢ is an strong solutions
of (*) of Chapter 1, then

¢ € C°([0,TT; Hy () N H*()) N C([0, TT; Hy()) (4.17)
and
Dl oo (0,711 (ynm2 () + 1D Lo 0,713 (02)) < (4.18)
< 2(10'| + 18N mr yrmzc) + 2o )-
Note that H}(Q) N H?() is equipped with the norm of the Laplace operator.
Let us consider the system (4.1) in the regular case, that is when:
2L e HY(Q), 2 € L*(Q) and v e HZ(0,T; H¥Y*(I)). (4.19)

Lemma 4.1 Euzists only one weak solution z of the non homogeneous mized problem (4.1)

when we choose the initial data (4.19) and z has the reqularity:
2 € C°[0,T]; Hy(2)) N C'([0,T; L*()). (4.20)

Furthermore, this weak solution z is an ultra weak solution.
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Proof: In fact, let v € HZ(0,T; H*(Q2)) such that © = 0 on 2. Note that 7" and Av are
objects of L?(0,T; L*(Q)). Let us consider the mixed problem:

v —Au=-0"+A0 in Q,
u=0 on 3, (4.21)
u(0) =2 and «/(0)=z2' in Q.

Since —0" + Av is in L?(0,T; L*(Q)), 2° € H}(Q) and 2’ € L?(Q), it follows, by regularity
of weak solutions, cf. Chapter 2, Theorem 3.1, that the solution w of (4.21) has the
regularity:

u € C°([0,T; Hy () N C([0, T]; L*(€2)).

By definition of weak solution, u satisfies:

d

- (W/(8), ) + ((u(t), v)) = (=" + AT, 9)

for all v € H}(2) in the sense of D'(0,T). Then

% ('(t) +7'(8), ¥) + ((u(t) +0(t),9)) = 0
for all ¢» € H () in the sense of D’'(0,T).

We have u+0 = v on ¥ and (u+0)(0) = 2% and (u+70)'(0) = z'. Therefore, z = u+70 is
an weak solution of the problem (4.1) with initial data (4.19). Consequently by regularity
of weak solution we have z € C°([0, T|; Hy(Q)) N C ([0, T]; L*(2)) and we have uniqueness
too.

To complete the proof we need to prove that z is also ultra weak solution of (4.1). In
fact, let be f € L'(0,T; L*(2)) and consider the sequence (f,) en , with f, € L*(0,T; Hy (Q2))
such that

lim f,=f in L'(0,T;L*)). (4.22)

H—+00

Let us consider the two backwards problems:

WA= W Q
6,=0 on ¥, (4.23)
0.(T)=0,0,(T)=0 on

and
0 —AO=f in O
h=0 on =, (4.24)
O(T)=0, 0'(T)=0 in Q.
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By the regularity of f, and f, it follows that exists strong solution 6, of (4.23) and
weak solution 6 of (4.24) and:

0, € C°([0,T); Hy (@) N H*(Q)) 1 CH([0, T); Hy (). (4.25)

It follows that 6, — 0 is weak solution of a backward homogeneous problem of the type
(4.24). Then changing ¢ in T' — ¢, we have, by energy inequality Chapter 2, Theorem 2.2,
(2.29) and Chapter 3, Theorem 3.1, hidden regularity (4.21):

2

00, _ o6

/ . o o 2 / o . - 2 7
|0“(T t)—0'"(T —1t)| +||0ﬂ(T t) —0(T —t)|| +H 5 D0

2s)

S O||fu - f||L1(O,T;L2(Q)) )
for all 0 <t <T. Taking t =T and let be  — 0o, we obtain, from the last inequality:

0,(0) = 6(0) in Hy(),

0,(0) = 0'(0) in L*(Q), (4.26)
0, 00
E — % in L (Z)

But z satisfies the regularity condition (4.15), then Az € C°([0, T]; H~*(€2)). But z is weak
solution of (4.1) with initial data (4.19), then 2" — Az € C°([0,T]; H~'(Q)). It follows
that makes sense (2" —Az,0,) or (2”,6,), (—Az,0,), duality between H(Q) and Hj ().
Then, by the regularity (4.25) we can use the integration by parts and the argument used
to obtain equality (4.2), but now not formally. Then we have:
/ 2fudadt = —(2°,6,(0)) + (', 6,(0)) — / % vdldt. (4.27)
Q p)

v

Taking the limit in (4.27) when p — oo, observing the convergences (4.26), it follows that
2z is an ultra weak solution of the non homogeneous problem (4.1) with regular initial data
given by (4.19). [

Let us prove now that the ultra weak solution of the non homogeneous mixed problem
(4.1) is in C°([0, T; L*(Q2)). In fact, given 2° € L*(Q), z' € H1(Q) and v € L*(X), exists
sequences () uen ; (2)uen and (vy,)uen with 20, 2, and v, , respectively, in Hg (), L*(Q)
and H2(0,T; H*?(T)) such that:

converges to 2° in L*(Q),
converges to z' in H (), (4.28)

v, converges to v in L*(X).
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Let 0, € Hy(0,T; H*(Q)) such that 0, = v, on X. Consider the non homogeneous

mixed problem:
Z,— Az, =0 in Q,

Z,=v, on X, (4.29)
2,(0) = 22, zL(O) = zplb

By Lemma 4.1 it follows that the solution z, of (4.29) is in the class:
50 € CO(0, T HY(Q)) 1 CH([0,T]; L)) (4:30)

and z, is an ultra weak solution of the problem (4.29). Therefore, if 2 is ultra weak solution

of (4.1), it follows that z, — z is also ultra weak solution of (4.1) with data z)) — 2°, z, — 2!

and v, — v. By the estimate (4.14) of Theorem 4.1, we obtain:
120 = 2|l Lo 0,m22(0)) < C(|22 -2+ ||Z;1L — M) + v — vll2s))-
When p — oo in the last inequality, we obtain by (4.28),

lim z, =2 in L>(0,T;L*)).

U—00

By z, € C°([0,T7]; L*(Q)), then z € C°([0, T]; L*(2)). [ |

Step 2., We prove now that 2/ € C°([0,7]; H'(Q)). In the proof we use Chapter 3,
Lemma 3.3 identity (3.5). We prove first Lemma 4.2 and announce Lemma 4.3 which will
be proved latter. Note, however, the notation:

Wol’l((),T; L*(Q)) = {U;v, Cji_: € L*(0,T; L*(Q)) and v(0) = v(T) = 0} ,

which is a Banach space with the norm:

dv

o (4.31)

||v||W01’1(0,T;L2(Q)) = ‘
LY(0,T5L%(92))

The dual of this Banach space will be represented by W~1°°(0,T; L*(Q)). For all f €
W, '(0,T; L*(Q)), we have:

T
(', f) = —/ (2, f) dt. (4.32)
0
Then, by Schwarz inequality and (4.31), we obtain from (4.32):
12 [lw 1o 0,220 < [12]] Lo 0,m02(02)) » (4.33)

for all weak solution of z of (4.1). |
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Lemma 4.2 For a weak solution z of (4.1) we have:
2 e Wy (0, T; LA(Q)).

Proof: If z is an weak solution we have z € L>(0,T; L*(2)), in particular z € L*(0,T; L*(Q))
what implies 2/ € H71(0,T; L*(Q)). Let f in W11(0,T; L*(2)) and consider a sequence
(fu)uen of functions f, € HY(0,T; L*(Q)) such that:
fo— f in Wy'(0,T; L*(Q)). (4.34)
We have by (4.32) and (4.33) for f, instead of f and taking limit when ¢ — oo, that
2 e W=h(0,T; L*()). |
Let us consider f € Hj(0,T; L*(Q)). From (4.32) and the definition of weak solutions

it follows
S , B , o0
(', f) = /sz dzdt = (2°,60'(0)) — (z',0(0)) + /2 £y vdldt (4.35)

for all 8 solution of the backward problem:

0" — A= f in Q,
6=0 on X (4.36)
O(T)=0, (T)=0 on Q.

We assume the following lemma which proof will be done later.

Lemma 4.3 The solution 6 of (4.36) satisfies the inequality:

#O)+ 1601+ | 5

< C||f||L1(o,T;H5(Q)) (4.37)
LA(%)

for all f € W' (0, T; HE ().

Note that the constant C' that appears in (4.37) depends only of T and the vector field

(hr)1<k<n -
From (4.35) and Lemma 4.2, we obtain:

(', O < U+ 12 1@ + Hollee) F o o2m3 @) - (4.38)

Since W, (0, T; HY(Q)) is dense in L'(0, T; HY(Q)), it follows that the inequality (4.38) is
true for all f € L'(0,T; H}(£2)), consequently

2 e L0, T, H1(Q)) (4.39)
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12|10y < C(12°] + 1M a-100) + [0l 223y - (4.40)
Note that (4.39) and (4.40) are verified for all ultra weak solution of the problem (4.1).
Now, let us consider a sequence of weak solutions of (4.1), approximating z as in (4.28).

Then z, — z is also an ultra weak solution of (4.1) and by (4.40) we obtain:

||ZL - Z/||L°°(0,T;H*1(Q)) < C(|ZB - ZO| + ||Z,i - 21||H*1(Q) + [|v, — U||L2(z))-

Whence

)EEO z, =72 in L®0,T; H(Q)). (4.41)
Note that z, is also weak solution, then z/, € C°([0,T]; H~'(Q2)) and by (4.41) we have
2 e C([0,T); H1(Q)). |

Proof: Let us consider the problem
w'—Aw=f in Q,
w=0 on X, (4.42)
w(T)=0, w'(T)=0 in Q
for f € Wol’l((), T; H}(Q)). Tt follows, from the regularity of strong solutions, Chapter 1,
Theorem 3.1, that:

w € C°([0, T]; Hy () N H*(Q)) N C([0, T; Hy (2)) (4.43)
|| oo 0,730y + W] Lo 0,133 e ) < ClF N Lro,15m2 (92)) - (4.44)
Let w’ = . Then 6 is solution of (4.36) because 6 verifies the equation (4.36); 0(T") =

w'(T) = 0 and ¢ (T) = w"(T) = Aw(T) = 0, because f € Wy (0,T; HL(Q)).
Whence,

10" (0)] + [1000)]| = [w" (0)] + [[w'(O)]] = [Aw(0)] + [[w' (0)]]-
It follows from (4.44) that:
10 (0)] + 110O)| < ClI S llzro,r:t3 () (4.45)

Note that with (4.45), in order to obtain the inequality of Lemma 4.2, it is sufficient

to estimate

— by || fllr1o,mm1 () - For this, we use the identity (3.5) of Lemma
W12 o

3.3, Chapter 3. In fact, we rewrite it for 6 solution of (4.36). We have with g, = hy:

1 [ [00\° 96(0)

5/E (5) drdt = — <6(O),hk o ) +

B [ T LAy (4.46)
2 Q axk

Q 8xj ka 8xj
- / e 2 et
Q al'k
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6/
9 W=122(0,T; L*(Q2)), then
k

a0’

Also, as f is zero in T and (9’ =w" = Aw + f, we obtain:

o0 9 ,
/(j)fhk 9 dxdt = _/Qa_SUk(fhk>9 dxdt =

0
Since hy, 887 € L>(0,T; L*()) it follows that hy
k

Tk
_ c’ii heAw dadt — 5 :i h f ddt — (4.48)
gZZ fAw dxdt — gZZ f2 dxdt.
By the same argument, we have:
—/Q (ggk) hy f dxdt = ;/Qhk % fAdxdt = %/Qg—j;]:fz dxdt. (4.49)

Substituting (4.49) in (4.48) and the result in (4.47), we obtain:

/ f'hy ﬁ dxdt = / 8f hipAw dxdt —
oxy, axk

—/ Ol wadxdt—— Ohy £2 dadt.
ka axk

‘/ O 1P — 101) dedt =
Q

(4.50)

We know that:

2
(4.51)

8h
=5 k(IA [+ 2f|Aw| + |f* = [16]]*) dadt.

Substituting (4.50) and (4.51) in (4.46) we have:
1 a0\> , dw'(0)
_/ (5) dl'dt = — <w (O),hk D2s > +
+—/ (%’“) |Awl? dadt — -/ <8h’“) ||w'||? dadt — (4.52)

af Ohy, Ow' ow’
- hiAw dxdt
/ (0%) RO drdl o+ 393] Oz, Oz,

Applying the estimate (4.44) to the right hand side of (4.52), observing that hy, €
C*(Q), 1 < k < n, we obtain:

00\ ?
8_ dl'dt < C||f||L1(0,T;H3(Q)) . (4'53)
N v

From (4.45) and (4.53) follows the proof of Lemma 4.3. |

The following corollary is an immediate consequence of Theorem 4.2.
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Corollary 4.2 The linear mapping {z°,z', v} — {z,2'} from L*(Q) x H~1(Q) x L*(X)
into L>(0,T; L*(2)) x L*(0,T; H*()), where z is the ultra weak solution of (4.1), is

continuous.
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Chapter 5

Concrete Representation of Ultra
Weak Solutions

5.1 Concrete Representation of Ultra Weak Solutions

The most difficult point in this section is to prove that the ultra weak solution z, Chapter
4, (4.1), has trace on the lateral boundary ¥ of the cylinder @ = Qx]0,T[. To make it
clear we need an appropriate trace operator what will be done in the following.

Let us consider the Hilbert space
U={ueLl*(Q);Auec H'(Q)}

with the norm:

lully = Jul® + [ Aull 1 q)

Following the argument of Lions [32], we prove that D(2) is dense in U. Note that by

D(Q2) we represent the restrictions to Q of the functions ¢ of C*°(R™). Then, if u € U it

has a trace on I', that is, we can construct a continuous linear operator v, such that:
1
uelU — yue H 2(I), (5.1)

such that yop = ¢|r for all ¢ € D(Q).
Let V be the Hilbert space

V = {ve L}0,T; L*(Q)); Av e L*(0,T; H ()},

with the norm:

10l[ = IVl o2 + 1AV L2 0 1010
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Using the density of D(Q) in U, we obtain, directly, that the set

{ne; n e C5(0,T), 0 € DQ)}

is total in V. Using (5.1) we define v, for functions of V. To simplify the notation we use

the same in (5.1), that is, we write:
(yov)(t) = yov(t) forall ¢e€]0,T].
It follows from (5.1) that yov € L2(0,T; H~2(I)) and
vo: V = L*0,T; H 2(T)) (5.2)

is linear and continuous.
Let us consider the Hilbert space Hg (0, T’ H 3 (T')) which is the space of w € L*(0, T} H 3 ()

d
such that d_qf € L*(0,T; H2(T")) with w(0) = w(T) = 0. The norm in this space is:

] e
w 1 = '
H}(0,T;H™ 2(T)) dt L2(0 T}[‘%(F))

The dual space of HL(0,T; H=2(T')) is represented by H~1(0,T; H~2(I)).
For the functions v € V we define the map 7y in the following manner:

T
(Yo', w) = —/0 (VOU’wI)H*%(F)XH*%(r) dt (5.3)

for all w € HL(0,T; H™2(T)).
From (5.3) we obtain:

|<§0Ul7w>| S ||,YO,U||L2(O,T;H7%(F)) ' ||w,||L2(0,T;H7%(F)) ‘

By definition of norm in H}(0,T; H=2(I')) we obtain:
‘(?01)/5 w)’ S H’YO’U‘ ’L2(0,T;H_1(F)) ’ le ‘Hé(O,T;Hi%(F)) : (54)
or

Cllolly -

~
[Fov ||H*1(O,T;H_%(F)) S

We observe that if v = ny, n € C§°(0,T) and ¢ € D(S2), then:
T T
(Fov', w) = —/ (Yo(ne), w') dt = —/ Ny w') 2y dt =
0 0

T
_ / 7 (o0, 0) ey dt = (o(i/ ), w),
0

that is, Ypv" = 79v’. We have proved the following:
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Theorem 5.1 The map o defined by (5.3) takes values in H(0,T; H~2(T)) and
To: V= H7H0, T HH(I))

1s linear and continuous.

Proof: As we have seen Jyv = v’ for v = np, with n € C(0,T), ¢ € D(Q), the map

Yo is called trace application for functions v' with v € V. |

Now let us return to the study of trace on ¥ for ultra weak solution z of Chapter 4,
(4.1).

In fact, let be § € C3°(Q). Then 6 is solution of the problem (4.5), Chapter 4, with
f =0"— Af. Substituting this f in the expression (4.15), Chapter 4, we obtain:

/ 2(0" — Af) dxdt = 0,
Q
because § € C5°(Q). Whence
(2" = Az,0) =0 forall 0eCFQ).

Consequently,
2 —Az=0 ae in Q. (5.5)

As a consequence of (5.5), since z € C°([0, T]; L*(Q2)), it follows that:
2" € C°[0,T); H*(Q)). (5.6)

Note that A: L*(Q2) — H~(Q) is linear and continuous.
Let us consider 8 = np, with n € H*(0,7T), (T) = ¢'(T) = 0 and p € HZ()). By
(4.15) Chapter 4, definition of weak solution z of (4.1) Chapter 4, we have:

/Q ("0 — nig) dudt = —(2°,7/(0)0) + {1, n(0)p). (5.7)

Integrating by parts twice with respect to ¢, applying Green’s identity and by regularity
of z given by (4.15) Chapter 4, we get:

/ 2" — i) didt = —(2(0), 1/ (0)) +
Q (5.8)

+((2(0), n(0)p) + f0T<Z” — Az, np) dt.

It follows from (5.7), (5.8) and (5.5), that:

— (2% 7' (0)@) + (2, n(0)0) = (—=2(0),7'(0)) + (2'(0), n(0)e).
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Choosing conveniently 7(0) and 7(0), we obtain

2(0) =2  Z(0) = 2. (5.9)

where 2 is the ultra weak solution. Then y € L?(0,T; L?(Q2)) and from the equation (5.5)

we get:

Ay(t) = A /O +(s)ds — /O Ax(s)ds = /0 S(s)ds = 2 (t) — 2(0). (5.10)

From regularity we have 2’ € C°([0, T]; H~(€2)) and it follows that Ay € L*(0,T; H*()).
Thus, y € V and by Theorem 5.1, we have:

/’Voy, = /’702. (511)
Let (z,)en be a sequence of solutions of the problem (4.29) Chapter 4. We obtain:

z, =z in C°[0,T]; L*(Q))

1 (5.12)
z, =2 in CY[0,T; H ()
Let us consider .
nlt) = [ u(s)ds
0
Then
Ay, = z,(t) — 2,(0)
By convergences (5.12) applied to y,, , we get:
y,—y in V.
Whence by Theorem 5.1 and definition (5.3) of 7y, we obtain:
Aoyl = Fozu — Aoy’ =0z i H Y0, T; H 3 (D). (5.13)

We know that z, € C([0,T]; H'(Q)), then we get Y02, € C*([0,T]; H/*(T')) and

o [ asds = [ o)),
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We have then,

T
Glogy ) = — / (o, ') dt =
0

_ /OT (/Ot(%zu)(s) ds,w’) dt = /OT(WM,M) dt,

Yoz = %y,@ = Yo%y - (5.14)

that is,

Observe that
Y2y =v, and v, —v in L*(X). (5.15)

As L2(%) = L2(0,T;L%()) ¢ H*(0,T; H 2(I')) continuously, it follows from (5.13),
(5.14) and (5.15) that
Yoz = . (5.16)

Scholium. The ultra weak solution z of (4.1) Chapter 4, was defined by transposition
method at (4.15) Chapter 4. The existence was proved by Riesz’s representation of con-
tinuous linear form on L'(0,7; L?(£2)). Then the ultra weak solution z is identified to an
object of L>(0,T; L*(Q)) the dual of L'(0,T; L*(Q2)). After it was proved the regularity,
that is, z € C°([0,T]; L*(Q)) N C*([0,T]; H~(Q2)), as shown in Theorem 4.2, Chapter 4.
In the present section we proved that the ultra weak solution is a genuine solution, that
is, 2 — Az =0, a.e. in @, cf. (5.5). 2(0) = 2%, 2/(0) = 2! as in (5.5) and the boundary
condition z = v on X, cf. (5.16). [
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Chapter 6

Boundary Exact Controllability

6.1 Boundary Exact Controllability

We will give, first, a general formulation of HUM (Hilbert Uniqueness Method), idealized
by J.L. Lions [36] and [38] or [39]. We begin with an action on the boundary ¥ of the
cylinder @ = Qx]0,T[, where Q2 is a bounded open set of R” with boundary I" and 7" > 0
is a real number.

Let us consider the wave equation

' —Ay=0 in Q (6.1)
with initial condition
y(0) =" ¥ (0)=y' in 9 (6.2)
and boundary condition
y=v on X =1Ix]0,T]. (6.3)

Physically we can think that the above linear non homogeneous boundary value pro-
blem describe the vibrations of an elastic structure € of R?, when the action on the
system is done along the boundary 3. It is interesting to observe that in the applications
the action is only on a part >y of X.

Observe that the function y = y(z,t), solution of (6.1), (6.2) and (6.3) depends of
x €Q,te[0,T] and v belongs to a certain space called space of controls. The function v
itself is defined as the control function. To make explicit this dependence we write for the

solution

y=y(r,t,v), y=y), y=y(r,t) or y=yt). (6.4)

Problem of Exact Controllability. Given 7" > 0, find a Hilbert space H such that for

every pair of initial data {y°,y'} € H, there exists a control v in the set of controls such
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that the solution y = y(z,t,v) of (6.1), (6.2) and (6.3) verifies the equilibrium condition:
y(x,T,v) =0 and ¢ (z,T,v)=0 (6.5)

forall z € Qor y(T) =0, y'(T') = 0 for all x € Q.
Let us consider a part >g of X, with positive measure, such that ¥y N Y is empty and

consider the action of the following type:

voon X
y= (6.6)
0 on X\X

The problem of exact controllability can be formulated as follows: given 7" > 0 find a
Hilbert space H such that for every pair of initial data {y°, y'} in H there exists a control
v belonging to the space of controls, defined on ¥y, such that the solution y = y(z,t,v)
of (6.1), (6.2) and (6.6) verifies the equilibrium condition (6.5).

6.2 Description of HUM

The methodology of HUM is based on certain criterium of uniqueness and the con-
struction of a Hilbert H space, by completeness. The method takes in consideration the
uniqueness and regularity for solutions of the wave equation as developed in the Chapters
1, 2, 3. We will describe it by steps.

Step 1. Given {¢", ¢'} in D(Q) x D(R), let us consider the homogeneous boundary value
problem
¢"—Ap=0 in Q,
p=0 on X, (6.7)
¢(0) = ¢", ¢(0)=¢' in Q.
We know, Chapter 1, that (6.7) has strong solution. By Chapter 3 we obtain

0 _ 5
o € L*(2). (6.8)

Step 2. We solve the backward non homogeneous problem:
w” - AQb =0 in Qv
— on Eo,

=g v (6.9)
0 on ¥\X,

W(T)=0, ¢ (T)=0 in Q.
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Remark 6.1 Note that (6.9) is a non homogeneous boundary value problem of the type
studied in Chapter 4. To obtain, from (6.9), the system (4.1) of Chapter 4, it is sufficient
to consider the change of variable T —t in place of t. Then (T —t) is solution of (6.1),
with y° = y* = 0 on Q. Note that v = % is in L*(X) by (6.8). We are in the situation

of Chapter 4. Consequently (6.9) is a well posed problem. By the regularity obtained in
Chapter 4, we can calculate 1(0) € L*(Q) and ¢'(0) € H~1(Q).

The Operator A. From the solution ¢ of (6.9), we define the application:

Mo, ¢'} = {4'(0), =4 (0)}.

Note that from {¢° ¢'} in D(Q) x D(Q) we obtain the solution ¢ = ¢(z,t) of (6.7)
with regularity (6.8) for the normal derivative. Then, the problem (6.9) is well posed,
from which we define A. Thus A is well defined.

Step 3. Multiply both sides of equation (6.9); by ¢ = ¢(z,t) solution of (6.7) and
integrate in (). We obtain:

/ ' ¢ dadt — / Ao dxdt = 0.
Q Q
Analysis of the first integral — We have:

@', ¢) = (", ¢) + (¢, &).

Integrating on ]0, T'[ we obtain:
T
WD), 0(0) = W 0),00) = | odaat+ [ w0
0
By condition (6.9)3 we modify the last equality obtaining
T
[ vrodsdt = w0 - [ w0 (6.10)
Q 0
By the same argument we modify the integral on the right hand side of (6.10), obtaining:
T
| @ dydt =01 - [ ot dud. (6.11)
0 Q
Substituting (6.11) in (6.10) we obtain:

/W’Qﬁdmdt: —(¢'(0)7¢0>+<¢(0)7¢1>+/W”dl’dt- (6.12)
Q Q
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Analysis of the second integral — Integrating by parts, we have:

—/Awqﬁdxdt:/Vz/z-ngﬁdxdt— (wgzdedt
Q Q

and
/ Ay dxdt = / Vo -V dxdt —/ Y dX.
Then
—/QA@/)qbdxdt: /Agzﬁw dxdt—i—/ Y dl'dt. (6.13)

Adding (6.12) and (6.13), since ¢ — A¢p = 0 a.e. in ) and also " — Ay = 0 a.e. in Q,
by Chapter 5, we obtain:

—('(0),6") + / 20 i = 0. (6.14)
Note that ¢ = % on Yy and ¢ = 0 on £\X°. Then, from (6.14) we obtain:
Wy oy [ (98
~w0).01+ w06 = [ (52) arar (6.15

Consider the first hand side of (6.15) as the inner product of {¢'(0), —¢(0)} with {¢", ¢'}.
We then obtain from (6.15):

(A{¢°,0'},{¢%, ¢'}) = —((0),¢")+

, 9o\’ (6.16)
+(1'(0), ¢") =/E (a—f) dr dt.
We define in D(2) x D(2) the quadratic form:
962 1/2
1{6°%, 61} ||r = ((5> dl“dt) (6.17)

which is a semi norm in D(Q2) x D(2). To obtain a norm, from (6.17), we need to prove:

if ¢ is a solution of (6.7) with {¢°,¢'} € D(Q) x D(R), then if ? =0 on X this implies
v

¢ is zero in (). This is true by Holmgren’s theorem, cf. Hérmander [23] and Lions [39].

Then, by Holmgren’s theorem it follows that the quadratic form (6.17) is, in fact, a norm
in D(Q2) x D(N).

Remark 6.2 The norm (6.17) induces in D(2) x D(R2) the following inner product:

[0
({8, 6", {0 1), = / 9% ar

where ¢ = ((z,t) is the solution of (6.7) corresponding to the initial data {C°,¢'} €

D(2) x D(2).
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It follows from Remark 6.2 and (6.16) that:

(Mo”0 1A 1) = ({0" 01 A ') (6.18)

By Schwarz inequality we obtain:

(A 6 1A D] < [{6" @] [ M-

proving the continuity of the bilinear form defined by A in D(2) x D(2). Let us con-
sider the completion of D(Q) x D(Q?) with respect to ||[{¢°, ¢'}|| defined by (6.17) and
represent by F' this Hilbert space. The continuous bilinear form {{gbO, o'}, {¢07¢1}} —
<A{¢O, o'}, {0 ¢ 1}> has an extension, by continuity, to the closure F. We continue re-
presenting this extension with the same notation. Then, we obtain a continuous bilinear
form on the Hilbert space F' which is coercive, by Remark 6.2. Then, by Lax-Milgram’s
Lemma, for each {n°,n'} € F’, dual of F, exists a unique {¢°, ¢'} € F such that

(Me® 01, {C" ) = ({0 1 A ¢ ) e (6.19)

for all {¢°,¢'} € F. Then, for each {n°,n'} € F’ exists a unique {¢°, ¢'} € F which is
solution of the equation A{¢°, ¢'} = {n° n'} in F’'. In fact A: F — F’ is an isomorphism.
Consequently, for each {y*,y°} € F’ exists a unique {¢°, '} € F such that

A{¢Oa ¢1} = {yla _yO} in F'.

Note that the map A was defined by A{¢°?, ¢'} = {¢/(0), —(0)}, where 9 is the solution

of the non homogeneous problem (6.9). Therefore,

U'(0) =y" and ¢(0) ="

0
Thus, considering 7 = T — ¢ instead of ¢ in (6.9) and the control v = a_gb for (6.1), (6.2)
v

and (6.6), we have ¢ = ¢(z,t) and y = y(z,t) are ultra weak solutions of the same non

homogeneous boundary value problem. By uniqueness of ultra weak solutions, it follows
that y(x,t) = ¢(z,t) for all (x,t) in Q. Therefore by (6.9); it follows that:

y(z, T)=0 and ¢'(x,7)=0 in Q
which is the condition (6.5). |
Remark 6.3 Note that the operator A is symmetric, look Remark 6.2, for example. Then,

the solution {¢°, ¢'} of the equation A{¢°, ¢'} = {y*, —y°} can be obtained by a minimiza-
tion process. In fact, {¢°, ¢*} is obtained by:

{¢O.¢trer

Min {% (AL, 1A ¢ = (' =97} <, ¢1}>} .
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For numerical analysis, cf. Glowinski, Li, Lions [19].
The next step is to characterize the spaces F' and F’ as Sobolev spaces. In fact, we
know by Chapter 3 that the weak solution ¢ = ¢(x,t) of (6.7) satisfies the inequality:

o 2
/E(aﬁ) drdi < Cy B(0) = Co [{6" 6" HIspy iy - (6.20)

14

Since F' is the completion with the norm defined by the right hand side of (6.20), we
obtain H}(Q) x L*(Q)) C F. In order to prove that FF C H}(2) x L*() we need to prove
that exists C'; such that

8 2
01H{¢0,¢1}||§{6(Q)XL2(Q)§/2<8—¢) dr dt. (6.21)

v

If we prove (6.21) it follows that F' = H}(Q) x L*(Q2) and its dual is F = H~1(Q) x L*(Q),
consequently everything is in order.
The inequality (6.20) is called direct and (6.21) is the inverse. To complete HUM for

the case of action on the boundary we need only to prove (6.21).
|

6.3 Inverse Inequality.

First let us fix some notations. With € we denote a bounded open set of R” and z°
any point of R™. represent by m(z) the vector x — z° with components my,(z) = z), — 29,
1 <k <n. If T is the boundary of €2, we define:

['(x9) = {x € ;m(z) - v(z) >0} and TI,(2°) = {z € ;m(z)-v(z) <0}

N(2%) = T(0)x]0,T[ and %,(z°) = I (2°)x]0, T

R(2°) = sup ||z — 2°|| = |m(z)[| (e -
€

Theorem 6.1 Consider T(2°) = 2R(z%). If T > T (") then:

2 2 R(z°) 09\
||¢0HH6(Q) + |¢1|L2(Q) S T——M/E(wo) (5) dI’ dt, (622)

for all weak solutions ¢ = ¢(x,t) of (6.7).
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Proof: For completeness of the argument, we rewrite the identity (3.5) Chapter 3. In
fact, for all vector field ¢ = (qx)1<k<n With g, € C*(Q), 1 < k < n and all weak solution ¢
of (6.7), we have the identity:

_|_

1 06\’ ) )
5/2%'% (8_(5) dl' dt = <¢(t)ana—i> )

1 8% n2 2 % a_¢ %
+ 2 ), o, (o] |Vo|*) dedt + , 0z, Dy O, dzdt.

T

Choose g(z) =z, — 2%, 1 < k < n. Then k; 8—‘3]; =n and g—z’; g_ai g_;: = |V¢|*. With

this choice for g, the above identity changes in the following:
1 00\’
x+2 / (|¢']> — |Vo|*) ddt +/ |Vo|* dwdt = = / MEVk (—¢> dr dt,
2 Q Q 2 N ov

T
where X = (gzﬁ’(t), qr %)

8xk
In ¥(2°) we have:

n 1/2 n 1/2
0<myg-v < (Zmi) (Z u,3> = ||m(z)|| < R(z).

0

k=1
Therefore:
06\ > 06\ > 96\ 2
p v 2(20) v £(z0) \ OV
We obtain:
0 2
X+ﬁ/(|¢'\2—|v¢|2)dxdt+/ IVo|? dodt < R(x)/ <%> dU dt.  (6.23)
2Jq Q 2 Jy@oy \Ov

1
To the first hand side of (6.23) add and subtract 3 / |¢'|? dwdt and divide / |Vo|? drdt
Q Q

in two parts. Represent /(|<b’|2 — |V¢|?)dzdt by Y. Then we obtain from (6.23):
Q

n—1 R(z2) o\ ”
< 7o . .
X+ Y TEO) < /W) (ay) davdt (6.24)

Note that the energy F(t) is given by:

B =5 [ (67 + Vo) da

and we have by energy conservation, that E(t) = E(0).
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Lemma 6.1 For all solution ¢ of the wave equation (6.7) we have:

B /Q<|¢'|2 = [VoP) dudt = (¢/(), 6(1))], -

Proof: It is sufficient multiply both sides of the equation (6.7); by ¢ and integrate by

parts. We have:

—/¢’2dmdt+(¢'<t),¢(t>>\§+/ Vo[ dedt — 0.
Q Q

From Lemma 6.1 we obtain:

X+n—_1Y+/
2 Q

¢ (m-V¢+nT_1¢) da:‘g.

Consider > 0 to be chosen later. We have:

/¢/ n—1 g <H/¢'2d —l—i/ n—1 2d
o 5 vy | Fdito | 5 .

We modify the second integral of the right hand of (6.26) as follows:

n—1 \" B (n — 1)
/Q<m-Vq§ 5 ) dx—/Q(m~Vd))2d:1:—|—/QT¢2dx+

+(n — 1)/{2(m-V¢)¢dm.

We have:
S Ly 0

By Gauss lemma, since ¢ = 0 on ¥, we obtain:

0
/Qa—%(mk¢2)dx = /Fuk-mk¢2df =0
/Zm Mx———/zamwdx:-@/m
" ory Oz, 2 Jo '
Substituting in (6.28) and then in (6.27) we obtain:
n—1 \°
/( . ) dx:/(m-v¢)2dx+
Q 2 Q
—1)? —
4 2 Q Q

(6.25)

(6.26)

(6.27)

(6.28)
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Note that

2 ¢ ? 1/2 ¢ 2 .
/Q(quzﬁ) d:c-/ﬂ(mka—%) de/Q(Emk) <28_:vk) dr =

= [Nm@IP(vop i < p) [ V0P
Q Q

Whence,

2
/ (m Vet ¢) dz < R(IO)/ Vo|? da. (6.29)
Q 2 0
Substituting (6.29) in (6.26) and taking ;4 = R(2°) we obtain:
/ & (m Vé+ "T_l ¢) dz < R(z°)E(0). (6.30)
Q

By (6.26) and (6.30) we obtain:

n—1 T

X
s :

Y‘:‘<¢'<t),m-w+”_l¢>

0

SZH((b'(t),m~ng+n;1¢>

< 2R(2°)E(0).
Lo (0,T)

Since T'(2") = 2R(x°) we have:

n—1

'X + Y‘ < T(2°)E(0).

Whence, by (6.24)

—T(2°)E(0) + TE(0) < — ‘X +— Y' <
<X+ 2Ly rp) < 20 /E . (a—f) vt
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Chapter 7

Internal Exact Controllability

7.1 Internal Exact Controllability

Let €2 be a bounded open set of R™ with regular boundary I'. By w we represent an
open subset of €2 and by x,, we denote the characteristic function of w. Let us consider

the boundary value problem:
y' — Ay =nhy, in Q
y=0 on X (7.1)
y(0) =9’ y'(0)=y" in Q
The exact controllability of (7.1) consists in given 7" > 0, find a Hilbert space H

such that for every {y° y'} € H exists a control h € L?(wx]0,T) such that the solution
y =y(x,t) of (7.1) satisfies:

y(I')=0 and ¢ (T)=0 in Q. (7.2)

This type of problem is called internal exact controllability because the action is
in the cylinder wx]0,T[ contained in @ = Qx]0,7T7.

In the following we will prove that HUM is well applied to solve the problem of internal
exact controllability. We describe it by steps.

Step 1. Given {¢° ¢'} € D(Q) x D(Q) we solve the regular problem:

§—Ap=0 in Q
p=0 on 3, (7.3)
¢(0) =¢", ¢'(0)=¢" in Q.

This mixed boundary value problem has a regular solution ¢ = ¢(z,1).
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Step 2. With the solution ¢ = ¢(z,t) of (7.3) we solve the backward problem:

V= A=y, in Q,
=0 on X%, (7.4)
W(T) =0, Y'(T)=0 in Q.

The operator A. With the solution ¢ = ¢(z,t) of (7.4) we define the map A by

Mo, ¢'} = {4'(0), =4 (0)}. (7.5)

Step 3. Multiply both sides of (7.3) by v solution of (7.4) and integrates on Q). We get:

/O T/Q ¢ dadt — /O T/Q Ady dzdt = 0. (7.6)

We obtain, integrating by parts on |0, 7| the derivative (¢',¢) = (¢”, ) + (¢', ),
T T
@T).00) - @O0 = [ @it [ (&)

0 0

Since ¥(T') = 0 it follows from the above equality:

4&ww-£<¢wﬁzlgwwﬁ

We also have (¢,¢") = (¢',¢') + (¢,1"). By a similar argument we have:

T T
_ 0 / o " d — / /d.
(6%, 4/(0)) /Owww /Ow,w)t
Consequently
T T
//dwwﬁ=+¢w@%uwwm»+//¢WMﬁ. (7.7)
0JQ 0JN

Since ¥ = 0 and ¢ = 0 on X, the Green’s formula gives:

/0 ' /Q At dwdt = /0 ' /Q SN dudt. (7.8)

From (7.6), (7.7) and (7.8), noting that 1 is solution of (7.4) we obtain:

T
/0 / ¢ ddt = (1/(0), ¢°) — (1(0), "), (7.9)
By definition (7.5) of A we obtain

(Mo”0} A" ¢'}) = ({¥/(0), =¥ (0)}, {¢", 6'}) , = (1(0), 6") — (¥(0), ¢).
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Then, by (7.9), we have:

<A{¢O7¢1}7{¢0,¢1}>Z/O/ngdxdt‘ (7.10)

Let us define in D(€2) x D(2) the seminorm

!!{¢0,¢1}\}2:/0T[U¢2dxdt. (7.11)

Note that to obtain a norm from (7.11) we need to prove that if the solution ¢ = ¢(x,t)
of (7.3) is zero in wx]0,T[, then ¢ = 0 in Q. The Holmgren’s theorem says that there
exists Ty = Tp(w), depending of w C €, such that for every T > Tj the unique solution
¢ = ¢(x,t) of (7.3) such that ¢ = 0 on wx]0, 77 is identically zero in Q.

Consequently for T' > T the quadratic form (7.10) is a norm in D(€2) x D(Q).

Represent by F' the completion of D(2) x D(§2) with respect to the norm (7.11), which
is a Hilbert space. Note that if ( = ((x,t) is the solution of (7.3) corresponding to {¢, ('}
belonging to D(2) x D(2), then the norm (7.11) is obtained from the inner product in
D(Q) x D(Q) defined by:

({0% o 1A ) = / T/w ¢ dadt.

0

Let us consider the bilinear form

(Mo®, 0'}1,{¢°, ¢'}) = /OT/w o dudt

defined in D(2) x D(Q?), which is continuous and coercive in D(2) x D(2). Then its
extension by continuity to the completion F' is also continuous and coercive in F. It
follows by Lax-Milgram’s lemma, that given {y!, —y°} € F’, dual of F, there exists a
unique {¢°, ¢'} € F such that:

(Mo”1 AC ) =y =" 1 A O s
for all {¢°,¢'} € F. Then, given {y*, —y°} € F’, exists {¢°, ¢!} € F such that:
Mg o't ={y', ="} in F. (7.12)
By (7.12) and (7.5) we conclude that:
$(0)=y° and '(0) =y

where 1 is the solution of (7.4). In (7.1) we consider h equal to the restriction of ¢,
solution of (7.3), to wx]0,T[. By uniqueness of solution of the linear wave equation we
have ¢(z,t) = y(z,t) in Q. Then y(T') = 0 and y/(T") = 0, which is (7.2). |
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Observe that the pair {¢°, ¢'} is constructive, when we know F', because the bilinear
form is symmetric and therefore {¢°, ¢'} is obtained by a minimization process as was
done in the boundary case, cf. Chapter 6.

The next step is to give a concrete characterization of the completion F'. Note that,
when we consider ¢ € L*(Q), ¢ € H (), we obtained in Chapter 4, Theorem 4.1,
inequality (7.14), for ultra weak solution, which applied to (7.3) gives:

T
/0 / 8 dwdt < Co(|6" ooy + 10113 1c) =

= Co 46", "Ml oy -

(7.13)

This implies
L*(Q) x H Q) C F,

continuous and densely. To prove that F C L*(Q2) x H~1(2). We need to prove the inverse

inequality:
T
2
Cy ", " | ooy -1y < /O/¢2 dzdt. (7.14)

Suppose we have prove (7.14). Then, with (7.13) we conclude the equivalence of the
norms |[{¢°, ¢'}[r and [[{¢°, @' | L2y sr-1(q- It follows that we can identify F to L*(2) x
H=1(Q). Consequently its dual is F' = L?(Q) x H}(2). Therefore given {y!, —1y°} €
L3(Q2) x Hy () we find a unique {¢", ¢} € L*(2) x H~1(Q), solve the ultra weak boundary
value problem (7.3), which gives ¢ = ¢(x,t), then the control h = h(z,t) is the restriction
of ¢ = ¢(x,t) to wx]0,T[. By the regularity of ultra weak solution, proved in Chapter 4,
follows that h € L*(wx]0,T). Consequently everything is in order. |

It is important to observe that the inverse inequality (7.14) will be proved for a re-
stricted class of open set w contained in €2, that is, for w with a particular geometric

structure and 7' large enough.

7.2 The Inverse Inequality

We begin with the notation. As we have done in the Chapter 6, we divide the boundary

[ of 2 in two pieces I'(z°) and T',(z°), where 2° is a point of R".

We say that w C € is a neighborhood, in €, of T'(z?), closure of I'(z), if there exists

some neighborhood O C R" of I'(x?) such that

w=0n0o. (7.15)
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Observe that R(z°) was defined in Chapter 6. Then we have the theorem giving the

inverse inequality.

Theorem 7.1 If T > 2R(x°), exists a constant C' > 0 such that:

T
e S AN A R 710

or all ultra weak solution of (7.3), wit € an € H™ .
for all ul k sol f (7.3 h ¢ € L*(Q dot e H1(Q

Proof: We begin substituting the proof of (7.16) by another equivalent inequality.

Step 1. If exists a constant C' > 0 such that

T
||¢OH§{OI(Q) + Wlﬁz(g) < C/o /w¢/2 dxdt, (7.17)

for all weak solution ¢ = ¢(z,t) of (7.3) with ¢° € H;(R2) and ¢' € L*(Q), then we have the
inequality (7.16), for ultra weak solution ¢ = ¢(z,t) when we take ¢° € H}(Q2) C L*(9),
ot € LAH(Q) c HHQ).

In fact, given {¢°, ¢'} € L?(Q) x H~}(Q) define x € H}(Q) such that —Ay = ¢' in .
Let us consider,

Y(x,t) = /gbxs

where ¢ = ¢(z,t) is the ultra weak solution of (7.3) with initial values ¢°, ¢'.

If we integrate (7.3); we obtain:

o) -0 -2 [ ' o5 ds =

But ¢/(x,t) = ¢(z,t) and " (z,t) = ¢'(x,t). Then:
V(@,t) = 6" + Ad(x, 1) + x(2)) = 0.
By the definition of x , the above equality implies:

V=AY =0 in Q,
=0 on X, (7.18)
¥(0) = x, ¢'(0) = ¢".
Note that in (7.18) we have x € Hj(2) and ¢° € L*(2), what implies the existence of
weak solution. If (7.17) is true we have from (7.18),

T
2
X120y + [0°] 20y < C/o /ng? drdt (7.19)
since ¢ (z,t) = ¢(x,t).
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Remark 7.1 Let us define in H-'(Q)) an inner product. We know that A is an isomor-
phism between H}(Q) and H™Y(Q)). Let G = A™'. Then, for all pair u,v € H~1(Q) we
define

(UaU)Hfl(Q) = (u, GU>H*1(Q)><H3(Q) = ((Gu, GU))H&(Q)ng(Qw

which is an inner product in H=(Q). The induced norm is:

10ll7-1(0) = (Gv, Gv)).

Then,
1611310y = ((G6", G") = (06 x) = Iz -

By Remark 7.1 we modify (7.19) obtaining:

T
161510y + 19° 320 < C/O /qu?dxdt.
n

Step 2. It follows from the above argument that in order to prove Theorem 7.1 it is
sufficient to prove the inequality (7.17) for weak solution ¢ = ¢(z,t) of (7.3). We follows
Zuazua [70] and Fabre [11] to prove (7.17).

For T > 2R(z") we know by Chapter 6, (6.22), that:

[ivowr oo < e (%) ara

for the weak solution ¢ = ¢(z,t) of (7.3).
Now, for € > 0, T — 2¢ > 2R(2") we have:

B0) =5 [(VO@F + o @R ar<c [ / . (%)2(11“& (7.20)

after the change of variables 7 = (T'— 2e)t + Te, 0 <t < T that implies e <7 <T —¢.

Consider h € [C'(Q)]" such that h-v >0 forall z € ', h = v on I'(z°) and h = 0 on
Q\w. Let be n € CY([0,T]) such that n(0) = n(T) =0, n(t) =1in |e,T — ¢[. We define
q(x,t) = n(t)h(x) which belongs to W1>(Q) and satisfies:

(i) q(z,t) = v(z) for all (z,t) € T'(2°)x]e, T — ¢[;
(i) q(z,t)-v(x) >0 for all (z,t) € I'x]0,T;

(i) ¢(z,0) =q(z,T) =0 for all z € Q;

( (

iv) q(x,t) =0 for all (x,t) € (Q\w)x]0,T7].

(7.21)
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0
If we consider the multiplier g (9_¢ we obtain the following identity for all weak solution

6= o(x,t) of (7.3): o

1 ¢\’ Y '
§/Eq.,,($) drdt_(¢(t),q-v¢)0+
o /Q div q(|¢'P — [Vo[?) dudt +

Oq, 0¢ 09

— — —dxdt — 'qd" - Vo dxdt.
anjﬁxkﬁxj o /ngq QS v

Applying this identity with the above defined vector field ¢, we obtain:

T 2 T—¢ 2
1//q.y(3_¢) dmzl/ / (@) drdt
2 o Jr (31/ 2 € I'(z0) aV

because ¢(z,t) = v on I'(2°)x]e, T — ¢[, and

T
=0, because n(0) =n(T) = 0.
0

Since ¢ € C1(2x]0,T]), div ¢ is bounded. We also have:

Cauchy inequalit;
Q wx]0,T] 8xk axj

895]- ﬁxk 6xj

(¢'(t).q- Vo)

k,j

< C/OT[U|V¢|2dxdt < O/OT[U(|¢’|2+ |V o|?) dadt.

The same argument to estimate — / ¢'q - V¢dxdt. Then,
Q

o a(b i ! /12 2
/5 /F(,w) (a_> drdt < © / / (&' + [V oP) dudt, (7.22)

where C' > 0 is a constant depending on ||q|y1.0(q) -
From (7.20) and (7.22) we get:

E(0) < C/ 7(\¢’|2 +|V¢|?) dadt, (7.23)

Step 3. We prove in this step that:

T T
16°] 1 0 + 19" |22y SC'/O/U)¢’2d:cdt+C/0/wgb2dxdt. (7.24)

In fact, let wy C €2 be a neighborhood of T'(2°) such that:

QNwy Cw.
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Note that (7.23) is true for each neighborhood of I'(z?), then it is correct for w,. We

obtain:

E(0)<C / T7 (¢ + |V¢|?) dudt. (7.25)

Consider p € WH>(Q), p > 0 such that
plx)=1 in wy and p(z)=0 in Q\w.

Define p(x,t) in @ by
p(z.t) =n(t)p*(z)
where 7(t) is the function above defined. We have:

(i) p(z,t)=1inwyx]e,T —el;
(i) p(z,t) =0 in (Q\w)x]0, T;

(i) p(,0) = p(a,T) = 0 in O (7.26)
. \% 00
(iv) M € L™(Q).
p
Multiply both sides of (7.3); by p¢ and integrate by parts in ). We obtain:
/p(b(b" dxdt — / pdAg dxdt = 0. (7.27)
Q Q
Analysis of the first integral
T T T T
| @ poa=@p0)| - [ @)= [ wo.sa,
0 0 0 0
p(z,0) = p(z,T) = 0, then:
T T T
| @rai—- (@)~ [ os)a (7.28)
0 0 0

Analysis of the second integral
9¢
— | A¢-ppdedt = [ Vo-V(pp)de — | pp—dI.
Q Q r v

The surface integral on I' is zero because ¢ is solution of (7.3). Then:

—/QA¢~p¢ dxdt:/oT/prgb-qu dxt—ir/OT/w Vp- Voo dudt, (7.29)

because p(x,t) = 0 in Q\w, p(z,t) = n(t)p?(x).
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We then obtain from (7.27), (7.28) and (7.29):

//p|ngS|2 dxdt = //qu’z da:dt+//p’¢¢'dxdt—

(7.30)
—//Vp-ngqb dxdt.
0 Jw
By (7.30) and (7.26) we obtain:
T
/ [oiverasir<c [ [ o1+ jop) i+
Y (7.31)
/Vp V¢¢dmdt'
By (7.30) we obtain:
g 1
/Vp Voo dxdt‘ 5//p|V¢|2dxdt+
) (7.32)
By (7.31), (7.32) and (7.26) we have:
T—e T
/ IVo|? dodt < C / / (¢ + ¢*) dadt. (7.33)
€ w 0 Jw
By (7.33) and (7.25) follows:
) ) T T
6]/ i1 0y + 10220y < C//¢’2 dxdt+0//gb2 dadt. (7.34)
0 Jw 0 Jw
|

From (7.34) and hidden regularity, Chapter 4, we obtain

99\’ L
/2@0) (5> drdtgc/o/w(¢ + ¢?) dxdt. (7.35)

Step 5. Suppose (7.17) is not true. Then given a natural number n exists initial data

0. 5; such that the solution %n of (7.3) corresponding to this initial conditions satisfies:

‘ ~ 2

n

~. 12
+ oL >
L2()

o] .
L2(0,T;L2(w))

Let us define

1

9 1/2
" L‘m)) ’

)
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and ~ s o
0 1
0 __ ¢n . I _ % . = % .
gbn - K ’ ¢n o K ! an K
We obtain 1
2
||¢;L||L2(0,T;L2(w)) < n

. o (7.36)
||¢n||H3(Q) + ‘¢H‘L2(Q) =1

From (7.36) we obtain:

T
lim //¢;3 dxdt = 0. (7.37)
0 Jw

n—o0

From (7.36) we also obtain subsequences such that:
L= i H(Q) and ¢l —¢ i LXQ)
weakly. The solution ¢, of (7.3) corresponding to the initial data ¢ , ¢! has the estimates:

¢, is bounded in L>®(0,T; Hi(9)),

" . : (7.38)
¢, is bounded in L*>(0,7; L*(2)).

n

The estimate (7.38) is true in w instead of €. Then, there exists a subsequence ¢, such

that

n — weak star in L0, T; HL(Q)),
Pn — ¢ ( 0(€2)) (7.30)
¢l — ¢ weak star in L>(0,T; L*(Q)).

Since H(Q2) C L*(Q) is compact, the estimates (7.38) and Aubin-Lions compactness

theorem, we obtain a subsequence ¢,, such that
¢, — ¢ strongly in  L*(0,T; L*(w)). (7.40)

From (7.37), (7.39)2 and Banach-Steinhauss theorem, it follows that ¢'(z,t) = 0 on
wx]0,T[, that is, ¢(x,t) is constant with respect to ¢t in wx]0,T[. But ¢ = 0 on %,
because ¢ is solution of (7.3). Then ¢(z,t) = 0 on wx|0,7[, by Holmgren’s theorem.
Then, by (7.40) we obtain:

¢n — 0 strongly in  L*(0,T; L*(w)).

Then by (7.35) for ¢,, we obtain:

Opn
v
By hidden inequality it follows that ¢¥ — 0 in H}(Q2) and ¢. — 0 in L?(Q2) what is a
contradiction with (7.36)s . |

—0 in L*(X).
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Chapter 8

Exact Controllability for Timoshenko
System

8.1 Exact Controllability for Timoshenko System

In this section we are interested in the exact controllability of the system:

"
Yy _ayzx_zx—"yzo
(8.1)
2 — b2y + Yy, =0

which is motivated by questions of one dimensional elasticity. In fact, the system (8.1)
has its origin in the study of transverse vibrations of beams when we consider the efects of
rotatory inertia. It is called, by S. Timoshenko [68], model for transverse vibrations of a
beam when we consider rotatory inertia and shearing deformation. Note that a and b are
positive constants. We suppose the beam of lenght L = 1. The transverse displacement
of the point x, for 0 < z < 1 at the instant ¢, 0 < ¢t < T, that is, the deformation curve,
is represented by z = z(z,t). We denote by y = y(z,t) the slope of the deformation curve
z = z(x,t) motivated by the rotatory action.

Let us represent by € the segment [0, 1] of the real line R, which represents the beam
in equilibrium. By Q we represent the rectangle Q2x]0, T of the plane R?, where T is a
positive real number. We denote by 1’ and y, the derivatives, respectively, with respect
to t and x, of the function y = y(z,t). We then consider the non homogeneous mixed

problem:

" .
Yy _ayxx_za:—"yzo m Qv
(8.2)

2 — b2y Yy, =0 in Q,
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y(0,7) =w(t), y(1,t) =0 in 0,77,

(8.3)
2(0,T7) =w(t), z(1,t) =0 in ]0,T7].

y(z,0) = 3°(z), ¥ (z,0) =y in Q,
(2,0) = y"(z), y'(x,0) (8.4)
2(x,0) = 2%(2), Z(2,0)=2" in Q.

The exact controllability for (8.1) is formulated as follows: given 7" > 0 find a Hilbert
space H such that for every set {¢°, y*}, {2°, 21} in H, there exists a pair of controls v(t),
w(t) in L?(0,T) such that the solution y = y(z,t), 2 = z(x,t) of (8.2), (8.3) and (8.4)
satisfy the condition:

y(z, T)=0, ¢y(z,T)=0 in Q,
(z,T) (z,T) ®5)
2(x,T) =0, 2'(z,T)=0 in Q.

In the present section we solve the above problem of exact controllability for the system
(8.1) by HUM, idealized by J.L. Lions [36] and [38]. For the case when a, b are variable
cf. Medeiros [47].

Plan of this Chapter.

e Controllability of the Timoshenko system by HUM.

Basic results on solutions of the Timoshenko system.

Energy Inequalities.

Direct and Inverse Inequalities.

Non homogeneous mixed problem for the Timoshenko system. Ultra weak solutions.
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8.2 Exact Controllability for the Timoshenko System
by HUM

In the present section it is described how to apply HUM in the present situation. A

summary of proofs of the properties of solution is done in the next paragraphs.

Theorem 8.1 Suppose a and b real numbers such that:

1 1
min{a,b} >1 and a=max< —,— ¢,
ta.b) {\/5 WS}

and let be T > 2a. Then, for each set of initial values {y°,y'} and {2°,2'} in L?(0,1) x
H=Y0,1) exists a pair of controls v(t) and w(t) in L*(0,T) such that the solution y =
y(x,t) and z = z(x,t) of (8.2), (8.3) and (8.4) satisfies the condition (8.5).

Proof: The proof by HUM will be done in the following steps.

Step 1. Given {¢°, ¢'} and {¢°, ¢!} in D(0,1) x D(0, 1) we solve the regular homogeneous

mixed problem:

QS” - a¢zx - 77ij1: + ¢ =0 in Qa

(8.6)
Wbt 6 =0 i Q,
¢(0,1) =0, (1,1) =0 in Q, (8.7)
¥(0,) =0, ¥(1,t) =0 in
6(x,0) = ¢°(x), ¢'(2,0) = ¢'(x) In (8.8)

Y(@,0) = ¢ (2), ¢¥'(z,0) =9 (z) in Q.
The above mixed problem (8.6), (8.7) and (8.8) has only one solution ¢ = ¢(z,1),

= (x,t) satisfying:
$2(0,1),1,(0,t) arein L*(0,T). (8.9)

Step 2. With the solution ¢ = ¢(z,t) and ¢ = ¢(x,t) of Step 1, we solve the backward

problem:
f — afm - CJ: + 5 =0 in Q’ (810)
CH — 0 +& =0 in Q.
S(O,t) = _agba:(()’t)) §<1’t) =0 in ]O’T[7 (811)

¢(0,7)

b (0,1), C(1,£) =0 in ]0,T],
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(2, T)=0, &(x,T)=0 in €, (8.12)
((z,T)=0, {'(x,T)=0 in Q.

Note that (8.10), (8.11) and (8.12) has only one solution ¢ = ¢&(z,f) and
¢ = ((a,1).

The operator A. For all {¢° ¢'}, {¢° 4!} in D(0,1) x D(0, 1) we solve (8.6), (8.7) and
(8.8). With the solution ¢ = ¢(z,t), ¢ = (z,t), satisfying (8.9), we solve (8.10), (8.11)
and (8.12), obtaining ¢ = &(z,t), ¢ = ((z,t), making sense to calculate £(0) = £(z,0),
¢(0) = ((z,0), £(0) = &(x,0) and ¢'(0) = '(x,0). Then, is well defined the map:

A% o' ¢% 9t} = {€(0), —€(0),¢'(0), =¢(0)} (8.13)
for all {¢°, ¢'}, {¢°, ¢!} in D(0,1) x D(0,1).

Step 3. Multiply both sides of (8.6); by £ and (8.6), by ¢, solution of (8.10), (8.11) and
(8.12), and integrate in (). We obtain, after integration by parts:

(€(0), ¢°) = (£(0),¢") + (¢"(0),4°) = (¢(0), ") =

= /T agi(0,t) dt + /T bp2(0,¢) dt. (8.14)
0 0

Observe that the second member of (8.14) is a consequence of the boundary conditions
£(0,1) = —ag, (0, ) and ((0,) = —bi, (0, 7).
From (8.13) and (8.14) we obtain:
(M 0,40 01} {9, 61 0% 1Y) =
= ({€'(0), =£(0), ¢'(0), =¢(0)}, {¢", &', ¥°, W'} =
= (€(0),¢°) = (£(0).6") + (¢'(0), 4") — (¢(0),4") = (8:.15)

T T
= /0 ag>(0,t) dt + /0 b2 (0,t) dt.
We shall prove at the end of the section, cf. §4, the existence of positive constants Cy ,
(' such that:
Col{6" 6" v, ¥}l
< / ag2(0,t) dt + / b2 (0,t) dt < (8.16)
0 0

< O IH{e®, &1 0, Y
Note that in (8.16) we have, by definition

1{6° &' 4%, v} = /0 (16" (@) + gg(@)* + [ ()" + [¢2(2)*) da, (8.17)
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which is a norm in (H}(0,1) x L?(0,1))>.

By (8.16) it follows that [[{¢°, ¢', ¢, '} defined by (8.17) is a norm in (D(0,1) x
D(0,1))?, equivalent to the norm of (HJ(0,1) x L?*(0,1))?* defined by (8.17). The operator
A defined by (8.13) is linear and continuous with respect to the norm || - ||. Then it has
a unique extension, by continuity, to the closure of (D(0,1) x D(0,1))? with respect to
|| ||7, which, by (8.16) is equivalent to the norm of (H}(0,1) x L?(0,1))? given by (8.17).
Therefore, F' = (H}(0,1) x L*(0,1))? and we have

A F— F'; (8.18)

F’ dual of F| because A is also coercive. This (8.18) is a consequence of Lax-Milgram
lemma. Note, also, that F” = (H~*(0,1) x L?*(0,1))>.

It then follows that A is an isomorphism between F' = (H}(0,1)x L?(0,1))?* and its dual
F'=(H(0,1)xL?*(0,1))?. Consequently, given {3°, 3!, 2%, 2} such that {y*, —¢°}, {z!, —2°}
€ H1(0,1) x L?(0,1), the equation

A{¢07¢17¢07¢1} = {y17_y0>z17_20}7 (819)

has a unique solution {¢° ¢!, ¥° 11} such that {¢°, ¢}, {¢°,¥'} € H}(0,1) x L?(0,1).
By (8.13) and (8.19) we conclude that the unique solution cf (8.10), (8.11) and (8.12)
satisfies (8.4). Then, the unique solution of (8.2), (8.3) and (8.4) with controls:

v(t) = —ap.(0,t) and w(t) = —bh,(0,1) (8.20)

satisfies (8.5), what we would like to prove. |
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8.3 Basic Results on Solutions of the Timoshenko

System

Let us begin with the study of regularity for solutions of the following mixed problem:

¢ - a¢xm - w:p + 925 = f in Q7 (821)
W’ - bwazx + ¢x =4g in Qa
»(0,t) =0, ¢(1,t) =0 in 0,77, (8.22)
»(0,t) =0, ¥(1,t) =0 in 0,77,
_ 0 / 1 -
¢(z,0) = ¢"(z), ¢'(2,0) =¢ (z) n Q, (8.23)
Y(z,0) = °(x), ¢'(2,0) =9 (x) in Q.
Theorem 8.2 Given
¢, ¢ € Hy(0,1); ¢', ¢t € L(0,1); f,g € L'(0,1; L*(0,1)), (8.24)

exists only one weak solution {p,1} of (8.21), (8.22) and (8.23) satisfying the conditions:

¢, € L>(0,T; Hy (0, 1)), (8.25)
¢, € L=(0,T; L*(0,1)). (8.26)

The mapping
{{o°, 0} o' '} {f, g3} = {{o, v} { v'}} (8.27)

18 continuous.

Theorem 8.3 Given

¢, " € Hy(0,1) N H?(0,1); 6%, 9" € Hy(0,1); (8.28)
f.9 € WH(0,T; H} (0,1)) |
exists only one strong solution of (8.21), (8.22) and (8.23) satisfying the conditions:
¢, € L=(0,T; Hy(0,1) N H*(0,1)), (8.29)
¢, 4" € L(0,T; Hy(0,1)). (8.30)
The mapping
{6%, 0"}, {o" 0"} A a3} — {6, ¢) {¢, 0"}

1S continuous.
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Proof of the Theorem 8.2.

By Galerkin method we prove existence of local solution. The a priori estimates permits
to extend the solution and obtain, in the limit, the unique solution. It is shown how to
obtain these estimates.

In fact, multiply both sides of (8.21); by ¢’ and of (8.21), by ¢ and integrate on (0, 1).

We obtain:
((b//a (b/) - a(¢xm: ¢/) - <wx7 (b/) + <¢7 ¢/) = (fa (b,)

(8.31)
(@/)”77/),) - b(¢xwaw,) + (qb:caw/) = (ga ’QZ)/)
Note that (-, ) is the inner product in L?(0,1). Then, from (8.31) we obtain:
1d
5 = (' OF +allo@®)]* +16)*) = (f, &) + (¥, ¢)
2 Cg (8.32)
/ 2 2\ __ AN /
5 7 WO +l[p®IF) = (9,97) = (¢2,9)
Observe that |- |, || - || are the norm, respectively, in L?(0,1) and H'(0,1). By addition of
the equations (8.32) we obtain:
Ld e NG 2 2 2y _
5 7 O+ [ OF +alle®” + ollv(@)I]" + o)) = (8.33)
= ([,0) + (9,9 + W2, ¢') — (92, 0).
Let us define the energy associated to (8.21), (8.22) and (8.23) by:
1
E(t) =5 (10'@F + 10/ OF + alle@]* + bl OIF + |6()F) (8.34)
From (8.33) and (8.32) it follows:
1
E'(t) < 5 (IF@1+ FOHS @ + 19O + lg@)] [ (OF +
IO + ¢/ @OF +116@)1* + ¥ ()]%)-
Then: .
E'(t) < 5 (If@0)] + lg(@)]) + O E®), (8.35)
where L
At = 1£(0) +1o®)] + - + 1 € 220.7).
Integrating (8.35) we obtain:
T ¢
BM<EO)+5 [ (@] +la@) dt+ [ bo)E) ds. (8.30)
0 0

From Gronwall’s inequality we have from (8.36):

E(t) < C(IIfllpor.201)) + 19l 210220y + Eo) (8.37)
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where Ey = E(0) .
From (8.37) it follows that Galerkin approximations are bounded in L*°(0,T; L?(0,1))
and L>(0,T; H}(0,1)), which is sufficient to obtain what claims Theorem 8.2. |

Proof of the Theorem 8.3.

The same remark done in the proof of the Theorem 8.2, about Galerkin approximations,
is true here. Then we will do a priori estimates.

In fact, multiply both sides of (8.21); by —¢’, and of (8.21), by —¢’, and integrate
on ]0,1[. We obtain:

(8.38)
Integrating by parts (8.38), we have:
d
8.39)
1d 112 b 2\ / / (
Remark 8.1 Note that
d / /
Integrating from 0 to ¢, we obtain:
[ 0t = (0,00 6.0) — 062 = [ (0 0m0) .
0 0
[ |

Integrating (8.39); from 0 to t and observing Remark 8.1, we have
from (8.39),

1 1
5 (102” + aldwal® +10:°) = 5 (16 + alez, [ + 164)%) +
t t (840)
[ ) ds = (0(0):0020) + (00) + [ (0hmn) .
By similar argument, from (8.39)y we get:
1 1
5 (WGP +01l) = 5 (12 + blyl) +
T t (8.41)
= [t ds + 0,0, 0.0) = @) = [ (v ds
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Adding (8.40) and (8.41) we get:

(16517 + aldaa|? + [a]® + W57 + bl1hu]?] <

VA DN | —

1
5 (02 +ale,[* + 162" + [ + [¥2) +
(8.42)

€T ! d xT /d T xTrxr
+/0|f||¢z| s+/o|g||wx| 5 [l || +
+Y2 %] + |0z [Vaa] + |02 [0,

We define:

F(t) = 5 (6L + aldu ()] + [0 + bl () + [62(6)]),

— N =

then we obtain from (8.42):
F(t) <C <||f”L1(0,T;H3(0,1)) + ||g||L1(0,T;H3(0,1)) + F(O>) :

From this estimate we obtain the proof of the Theorem 8.3.
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8.4 Enmnergy inequalities

In this section we will prove that the energy defined by (8.34) associated to the systems
(8.6), (8.7) and (8.8), satisfies an inequality of the type:

CDEQ S E(t) S ClEO for all 0 S t S T, (843)

where Cy, C; are positive constants.
In fact, multiply (8.6); by ¢’ and (8.6)2 by ¢’ and integrate on |0, 1[. Whence,

(0", ¢) — (s, @) + (¥, 02) + (6,0") =0

(8.44)
(1/1”7 'lvbl) - b(wxm ¢/) + (¢xa W) =0
From (8.44) it follows:
’ d _
B0) + 5 (6,6:) =0
and integrating we have:
E(t) + ((t), ¢u(t)) = Eo + (°, 63).
We know that: .
=5 (10 + 162) < (v°, o),

therefore, .

Eo — B (J[0°) +1921%) < Eo + (¢°, 8Y). (8.45)
We have:

1 1 1 1
Ey =5 (WP +16:21°) 2 5101 + 5 [ + 5 (e = Dleal” +
b o Loz, 1 0p
+5 [l = 5 W+ 51T
By Poincaré inequality, we get:
1 1
/ v (s)|* ds > )\1/ lv(s)|*dx for all v € H(0,1).
0 0
A1 = 72 the first eigenvalue of —v” = Av, v € HJ(2). Then,

1
WP < N ol
We obtain: ; . . .
Ou02 — 21002 > = (p— 2 ) 10
0 = 3107 2 5 (b= = )

with 72b > 1 by hypothesis of Theorem 8.1.
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Therefore, we modify (8.45) obtaining:

Eo+ (¢°,49) > Eo — 5 ([0° + 691%) >

(8.46)
> 3|6+ 5[0 + 5 (a = DIGYE + 5 (b— 72) 4217 + [0
From (8.45) and (8.46) we get:
1 1 1
B(t) + (9, 9)2) > 51612 + 510! + (= DI +
1 1 1
(= = 02 P 2.
v (0 ) ee + 5let
From this inequality we obtain:
CoEy < E() on 0<t<T. (8.47)

Let us now prove the second member of (8.43). For this, we have:

E(t) + (¥, ¢.) = Eo + (¢°,¢2) < C E.

Since
1
=5 (I +16%) < = (e, @) = (¥, 6),
we obtain,

B(t) 5 (al? +10P) < B() + (4,6,) < C .

To modify the right hand side of the last inequality, we use Poincaré inequality for |¢| and

obtain:
1 1 1 1
E(t) — = |th,]> — — 6,2 > = |2 + = |o']?
(0) = 310l = 3 0a 2 0P + 5 10 +
a2V el L - el > i Ly o11) B
—|la——)|¢ —(b— " >min{a——,0—1, .
2 )\1 2 )\1
Then E(t) <CiEyon 0<t<T. [ |

8.5 Direct and Inverse Inequalities

The key point in the proof of Theorem 8.1 was the double inequality (8.16). The right

side of (8.16) is called direct inequality and the left one inverse inequality.
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8.5.1 Direct Inequality

Let us consider the system (8.6) with f, ¢ in the right hand side of (8.6); and (8.6),,
respectively, instead of zero. We shall prove first a basic identity, cf. Chapter 3. We need
only f,g € L*(0,T; L*(0,1)).

Lemma 8.1 If {¢,v} is an weak solution of (8.6), (8.7) and (8.8) with right hand side
f and g, then we have the identity:

5 [ @00 + 0.0y =
== [(¢/($,t), (1 - $>¢z(xat)) + (W(l}t)a (1 o x)wx<x7t))]g +

+/Q(|¢/|2+|¢’|2+a|¢x\2+b|1/zm|2) dzdt —
1
—§/Q|¢]2dxdt+/Qf(1—x)gzﬁwdxdt—l—/czg(l—x)q/;mdxdt,

(8.48)

Proof: The proof is done for the case ¢°,¢° € H}(0,1) N H?(0,1); ¢', ¢! € HL(0,1)
and f,g € WH(0,T; H}(0,1)). Multiply (8.20); by (1 — 2)¢,., (8.20); by (1 — 2)¢, and

integrating on (), we obtain:

/(;5” (1—2) gzﬁmdxdt—a/gbm- x)dy dxdt —
/ Yo+ (1= 2), dadt + / b (1 — ), dudt = (8.49)
Q
(1 —z)¢p, dxdt
Q

/ W (1= )y dadt — b / G - (1= )by dadt +
Q Q

(8.50)
+/Q¢x-(1—xmdxdt:/Qg-(l—x)wxdmt

Let us calculate (8.49) term by term
T
[ ¢ (- aondodt = [ (&,(1- )0 dt =
Q 0

— (¢, (- 2)6.)|" - / (& (1— 2)6l) dt

The integral at the right hand side becomes:

/ / (1 — 2)¢/'es, dedt = /T/1(1—x)ﬁ|¢/|zdwdt by parts
:%/0 { )¢’ ‘0 /|¢|2dx}dt _—/|¢>|2d gt
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Note that (1 — x)¢/(x, ) |0 —¢'(0,t) = 0. Then,

[ o = aporduit = (0,0 = )8,y ~ 5 [ 6ot doi.
Q Q

We obtain:
—a / bra - (1 — )6, dudt = —a / ' / (1= )t dadt =
:——/ / (1-2) —¢> drdt ™2
5 [ {o-mans [otafa
— %/()Tagbi(o,t) dt—%/@agbidmdt.
Then,

1 (7 1
—/aﬁbm'(l—x)%dwdt: —/ ag?(0,t) dt——/aqﬁidxdt.
Q 2 /o 2 Q

The next terms are:

—/ Cbz‘(l—x)%dﬁdt:—/(1—$)¢x¢xdxdt _
Q Q

_ a0 dvar -
/Q¢-(1—SL')¢zdxdt—2/Q(1 :c) gb drdt =

:%/OT{(l—x)ng(x,t)‘é / & da:} /qs dadt

because ¢(0,t) = 0.
Then,

_ 1.
/Qszﬁ-(l—x)qbzdxdt_ 2/Q¢ dadt.
From (8.51) to (8.54) we obtain, by addition:
1 T
3 ao.nd= @0 -2+
§?dedt + = | a¢? dedt + | (1 — x)hydy drdt —
/ /a T /Q( ) T

—_— 2 . —
Q/ng da:dt+/Qf (1 — )¢, dadt.

(8.52)

(8.53)

(8.54)

(8.55)



94

Let us now calculate (8.50). We obtain, by the same method used for (8.49):
T
5 [ v00d =0 -2l +
—i——/ Y? dxdt + = / b2 drdt — (8.56)
2 Jo 2Jo

Q Q

Finally, if we add (8.55) and (8.56) we obtain:

1 T
3 | a6z, + b0 it =

=~ {(¢/, (1= 2)6) + (W', (1 = 2)e)} |, +
1

g QO 1l e ) ot

1
—§/Q¢2d$dt+/Qf-(l—ﬂE)Cbxd:EdH—/Qg-(1—27)¢xdxdt.

|
Now, using the identity (8.48) of Lemma 8.1, we are able to prove the direct inequality.
By limits, the identity is true for weak solution. Note that:

(¢, (1= 2)¢)]g <2 sup [(¢/(2,1), (1 = 2)ula,1)] <

0<t<T

I I
<2 sup {—/ ¢’2(x,t)dx+—/ gbi(x,t)da:}SC’oEo.
o<t<T L2 Jo 2 Jo
[ |

To prove the direct inequality, let us consider (8.48) with f = g = 0, that is, {4, ¥} is
a solution of (8.6), (8.7) and (8.8). If we consider the inequality CoFy < E(t) < C1 Ep and
Poincaré inequality, it follows from (8.48) that:

T
2
| (0.0 00200.0) dt < €6 0 0% 0 i -

8.5.2 Inverse Inequality

We will prove the inverse inequality following the method of Zuazua [71]. In fact, let us

consider the functional:

F(z) = 1/ %w((b'(:c, t)? + apy(z,t)* + ¢(x,t)?) dt +
o (8.57)

T—ax
+—/ (V' (2, 1) + by (, )?) dt,

T
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defined on 0 < x < 1. When z = 0 we have:

1

F(0) = 5/0 (ag(0,8) 4 b, (0,1)?) dt. (8.58)

1 1
which is the second hand side of the inverse inequality. Note that @ = max (— , —> .
va' Vb
Represent F'(z) = G(x) + H(z) given by (8.57). Taking the derivative of F(z) we have:

T—ox
@) = [ (06, + abbua+ 06.)di -

xT

_% ST (S (@) + agu(a,t)? + bz, 1)?). (8.59)
t=T—ax
t=ax
Integrating by parts:
T—ax Ton
/a bt =dol, / o .

Multiply both sides of (8.6) by ¢, and integrate on (ax,T — ax) with respect to t. We get

T—ax T—ax
| o= [ b
ax ax (8 . 6 1)

-/ T et + / T sgndi=o0.

T ax

Substituting (8.57) in (8.60) we get:

T T—ax T—ax
vl = [ dod- [ avnondt-
ax ax (8 . 62)

-/ T b dt + / T goadt = 0.

x axr

Adding (8.59) and (8.62) we have:

T—ax T—ax
G'(a) = ¢l'on|. " — / wz¢xdt+2/ by dt —
=3 D0 (@) + adu(w, 1) + ¢(x. ).

t=T—ax
t=ax

(8.63)

The first term on the right hand side of (8.63) can be dominated as follows:

é/Q_ é/Q_
¢¢$_¢+B¢ ¢+B¢

Taking § = —= we get:

EH

¢ ¢z §%<%¢’2+%a¢i).
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1
We know, by hypothesis of Theorem 8.1, that 7 < a, then
a

06, < 5 (¢/(2.1) +adu(@,1)?),

whence,

Vol <5 D (9@ + adu(et) + o(x, 1)
From (8.63) and (8.64) we obtain:

G'(x) < — / Y 42 / et

T [e %4

The derivative of H(z) with respect to z is

H@) = [ b d = 3 (02 + b)),

x t=T—ax
t=ax

By the same argument used in the analysis of G’(z) we obtain from (8.66):

T—ax

H@) =l [ ot =5 3 (0002 + bia(a.0)?).

2
x t=T—ax
t=ax

We also obtain:

Vel ST Y W+ b 1)?).

t=T—ax
t=ax

From (8.67) and (8.68) we obtain:

T—ox
H'(z) < / buth dt.

T

Adding (8.65) and (8.69) we get:

T—oax
F<z[ oo

xT

Since

P, < max {1, %} (% oz, t)* + %aqﬁx(x,t)Q) ,

we modify (8.70) to obtain:
F'(z) < C F(x).

Integrating (8.71) we have:

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)

(8.70)

(8.71)
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/1F(aj)d:c§ e’ F(0).

Since T' > 2ar, we obtain:

T—ax T—a

=)

—agl+ = ¢)dxdt+

) dxdt.
Since 0 < x < 1, we obtain:

T—ax 1 1 1 1
(T —2a)Ey < Oy / / (5 ¢ + 5 agl + 5 9252) dxdt +
ax 0

T—ax 1 1 1 1
+ cl/ / (5 W zwg) dadt = 01/ F(z)dr < Cy F(0).
ax 0 0

Then for T' < 2a we obtain the inverse inequality and consequently the proof of Theorem
8.1. |

8.6 Non Homogeneous Mixed Problem for the
Timoshenko System. Ultra Weak Solutions.

We consider, now, the non homogeneous mixed problem:

V' — e — 2. +y =0 in Q,

(8.72)
2" — bzac:c + Yz = 0 in Qa
y(0,T)=wo(t), y(1,t) =0 in ]0,T7, 8.73)
2(0,T7) =w(t), z(1,t) =0 in ]0,T7].
y($a0> =Y (I)v y/(ZE,O) =Y (I) n ]O’T[’ (874)

2(x,0) = 2%(2), #/(2,0) = z'(z) in ]0,T].

We want to study this problem when we suppose v(t), w(t) in L?(0,T). In order to
obtain the definition of solution for the above mixed problem, we follows an heuristic
procedure. Multiply both sides of (8.72); by ¢ and of (8.72)s by 7 and integrate on Q.
Here {¢, 1} is the solution of:

¢,/_a¢xm_¢x+¢:f in Q7

(8.75)
1/}// — by + 0o =g in Q.
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»(0,t) =0, ¢(1,t) =0 in 0,77, (.76)
¢(O,t) =0, ¥(1,t) =0 in ]O,T[,
oz, T)=0, ¢(z, T)=0 in 0,77, .77)
(x,T)=0, ¥'(z,T)=0 in ]0,7T].

We know, that the solution {¢, 1} belongs to the class
60 € CO(0,T]; H(0,1)) 1 O (0, T).L7(0, 1)),

where f,g € L'(0,T; L*(0,1)).

After the integration on (), we obtain:

—(y',¢(0)) + (y°, '(0)) — (z1,4(0)) + (=%, ¢'(0)) —
_é(w@@ﬁwﬁ—/lm@@@ﬂﬁ+ (8.78)

T 1 ’
+/ / (yf + zg) dzdt = 0.
o Jo

Note that ¢(0),4(0) € Hj(0,1) and ¢'(0),¢'(0) € L*(0,1), therefore, if in (8.78) we
choose y°,2° € L?(0,1) and y',2' € H'(0,1), then make sense, in (8.78), (y*, ¢(0
(z',4(0)), duality pairing between H~'(0,1) and H}(0,1). Also make sense (y°, ¢'(0
(2°,4/(0)) the inner product in L*(0,1). Note that ¢,(0,t), ¥,(0,t) belong to L*(0,1), cf.
84, inequalities.

Motivated by (8.78) we consider the map S defined on (L*(0,T; LQ(Q)))Q, with real

values, by:

(5, {i]f’g}> = (", ¢'(0)) = (y', 9(0)) + (2%, 4'(0)) — (=", ¥(0)) +

+/qm@@@®ﬁ+/2m@%@wﬁ. (8.79)

Whence
(S, AL gD < 1P O)] + 19 | -1 0,0) 1@(O)]] +
2 O)] + [12M 10,0y 10O)] + (8.80)
+alv(t)]|¢z(0, )| + blw(t)] |12 (0, 7)].
As a consequence of the Theorem 8.2 and the identity of Lemma 8.1, we obtain, from
(8.80):
S, .91 < O+ 18 -sioy + 1201+ 17 -1y +

(8.81)
+d2(0,8)] + [¢2(0,)]) I{F, 93 220 70200, -
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Then (8.81) says that S defined by (8.79) on (L'(0,T’; L*(0, 1)))2 is a continuous linear
form, that is, S is an object of (L*(0,T; LQ(O,l)))2 dual of (L'(0,T; LQ(O,l)))Q. By
Riesz’s representation theorem, exists an object {y,z} of (L*(0,T’; L*(0, 1)))2 such that:

(S{f.9)) = /0 /O (uf + zg) dudt. (3.82)

Definition 8.1 For {y°,y'},{2° 2'} € L*(0,1) x H71(0,1) and v,w € L*(0,T), we call
ultra weak solution or solution by transposition of the non homogeneous problem (8.72),
(8.73) and (8.74), the pair of functions {y,z} € (L>(0,T’; L*(0, 1)))2 such that satisfies:

/0 / (uf + =g) dadt = (5, 6(0)) — (4, 6(0)) + (=°,'(0)) —

—(z ,2/1(0))—1—/ av(t)p.(0,1) dt—i—/o bw(t)e.(0,t) dt,

0

for all pair {f,g} € (Ll(O,T; LQ(O,l)))2 and {p, v} is solution of (8.75), (8.76) and
(8.77).

Exists only one ultra weak solution for the Timoshenko system and this solution {y, z}

satisfies:

||{y7Z}||(L°°(O,T;L2(O,1)))2 < (8.83)
< O+ My 100y + 12°1 + 12 1 100y + 1020, 1)) + (0, 1)]).

In fact. the existence is a consequence of Riesz’s representation theorem, as we have
seen above. The estimate (8.83) is a consequence of (8.81). The uniqueness follows from
Du Bois Raymond’s Lemma.

|
We can also prove using the same method as in Chapter 4 and 5 that the ultra weak

solution {y, z} of (8.72), (8.73) and (8.74) satisfies the regularity condition:
y,z € C°([0,T]; L*(0,1)) n C*' ([0, T); H~'(0,1)),

the initial data and the boundary conditions. |
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Chapter 9

HUM and the Wave Equation with
Variable Coefficients

9.1 Introduction.

Let Q be a bounded domain R" with boundary " and @ the finite cylinder @ = Qx]0, T
with lateral boundary ¥ = I'x]0, T[. We consider the following system:

ou - ou’ ou )
_Z a (CLU xZ, t o Z) +Zbl(l’,t)8—xl—|—2dl(l',t)% =01in Q,

u=vin ¥ =1Ix%]0,T7,
u(0) = u”, v/(0) = u' in Q

where ' stands for 2% and u(0), «/(0) denote, respectively, the functions z ~ u(z,0),
x +— o/ (x,0). Here v is the control variable, that is, we act on the system (x) through the
lateral boundary 3.

The problem for exact controllability of system (x) states as follows: Given T' > 0
large enough, is it possible, for every initial data {u®, u'} lie in an appropriate space on 2
to find a corresponding control v driving the system to rest at time 7, i.e., such that the

solution u(z,t) of (%) satisfies

w(T) =0, «'(T) =07

!This part is a paper that was published for one of Authors in Asymptotic Analysis 11 (1995), pp
317-341.
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System (x) is motivated in the study of the boundary exact controllability for the
wave equations in @, @ a particular non-cylindrical domain. A particular system (x)
appears when the wave equation ©” — Au = 0 defined in @ is transformed in a equation
defined in @, as we shall see in the following chapter. Our objective is to show that this
is particular system is exact controllable. For that we use the Hilbert Uniqueness Method
(HUM) introduced by J. L. Lions [8] and [10]. This is possible because in this case we
have uniqueness, reversibility and smoothness of solutions.

Concerning to the exact controllability for system (%) we note that the case a;; =
d;;a(t), by = d; = 0 was studied by J.L. Lions [36] and the case a;; = d;;a(x), b; = d; = 0,
by E. Zuazua [69]. Also, R. Fuentes [16] analysed the situation b; = d; = 0. Our approach
is different of this one and we note that the presence of the term g—;; in (x) gives hard
technical difficulties.

A number of authors have used the HUM in the study of exact controllability of
distributed system among of them we can mention J.P.Puel [17], J.P.Puel and E. Zuazua
[58], C. Fabre [11], C. Fabre and J.P.Puel [12], E. Zuazua [68], [69], V. Komornik [26] and
L.A. Medeiros [47].

This chapter is organized as follows:
e Main result.

e The Homogeneous Problem.

e Inverse and Direct Inequality.

e Exact Controllability.

9.2 Main Result

Let us introduce some notations (cf. J.L. Lions [40]). Let z° € R", m(z) = z — 2° and

v(x) the unit normal vector at « € I, directed towards the exterior of 2. Consider the sets
(2% ={z e ;m(z)-v(z) >0}, [ (a") =T\ T(z?), (2°) = I'(z°)x]0, T7.
In the definition of I'(z"), - denotes the scalar product in R”. We consider:

R(2%) = sup [m(z)|, M = sup ||
e e

and \; the first eigenvalue of the spectral problem —Ag = \p, ¢ € H}(Q). Let k : [0, co[—
[0, 00[ be a continuous function. All scalar functions considered in the problem will be

real-valued.
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We make the following assumptions:
(2 contains the origin of R"; (H1)

(This hypothesis is introduced in order to facilitate the computations but it is not neces-

sary);

The boundary I of 2 is C? (H2)
and concerning the function k,
k€ W10, 00), (H3)
0 < ko =inf k(t), supk(t) = k; < oo, (H4)
t>0 t>0
Fl=r < (H5)
su =7< —,
50 M
L= / ()|t < o0, Iy = / W (#)]dt < oo . (H6)
0 0
We consider the operator
/
Lu = U” — i (513 — k/2$i$j)k72% — 2]€/k71$i Ou +

ou
8301-

+[(1 = n)K? — K"Kk 22,

where 0;; is the Kronecker delta.

Remark 9.1 Here and in what follows the summation convention of repeated indices is

adopted.

The formal adjoint L* of L is

d 2 0z 07
Ko — M T 12 N2 Y% | o1 Ye
Lz =z o (05 — K xiz;)k o, 2K’k o
— 20K’k + [(n+ DK — K"kl gz + (9-2)
L
+ [n(n + DE? — nk"k)k 22

We want to act on only a part of the boundary 3, more precisely, one considers the

following system:
Lu=01in Q,

u_d v oon (29,
0 on X\ (20,

u(0) = u”, ¥/(0) = u' in Q.
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Remark 9.2 In Remark 9.8 we will give a special time Ty depending on n, R(z°), Ay, the
function k and on the geometry of €.

Now we states the main result of the chapter.

Theorem 9.1 We assume that hypotheses (H1)-(H6) are satisfied. Let T > Ty. Then for
every initial data {u®, u'} belonging to L*(2)x H=1(Q), there exists a controlv € L*(X(z?))
such that the solution defined by transposition u of Problem (9.3) satisfies

Remark 9.3 By applying the same arguments used in the of the proof of Theorem 9.1
we obtain the exact controllability for system (x) with b; = d; = 0 and a;;(x,t) in the
hypotheses of R. Fuentes, loc. cit, that is, the aj;s are smooth, symmetric, uniformly

elliptic on @,
sup/ |aj;(w, t)|dt < oo
0

zeN
and there exists 6 > 0 such that

0
aij(, )& — %a_:maij<x,t)ml(x)§i§j > daij(w,t)&E;

for all (z,t) € Q and £ € R™.

The proof of Theorem 9.1 will be done in the next three sections.

9.3 The Homogeneous Problem

Let us introduce some notations that it will be used in what follows. With (-,-), | - | we
will denote the inner product and norm of L?(2) and with | - ||, the norm of H}(Q) given
by the Dirichlet form. The duality pairing between the space F' and its dual F’ will be
noted by (-, ).

In this section we obtain the existence and the identity of energy of solutions of a mixed

problem the general operator of second order in ¢.

Ru=u"+ A(t)u + b;(x, t)g—u + c(z, t)u’ + d;(x, t)g—u + f(z,t)u (9.4)
€T; ZT;
where 5 5
U U

The coefficients a;; satisfy the following hypotheses:
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a;; are symmetric and uniformly coercive on @);

ai; € C1(Q), af; € L™(Q); (9.6)
b, f € W0, T L5(Q)): 9% € 19(Q).

Let us consider the problem

Ru=hin Q,
w=0inY, (9.7)
u(0) = u”, ¥/(0) = u' in Q

with data {u®,u',h} € H}(Q) x L*(Q) x L'(0,T; L*(Q)). A function u : Q — R will be

called a weak solution of Problem (9.7) if u belongs to the class
we L0, T; Hy(Q)), v € L®(0,T; L*(2)),

satisfies the equation

T T T o'
. ! /d d bi_y d
/0 (', &) t+/0 a(t,u,§) t—l—/o < oz, §> t-+

T T
+ [ Puge= [ hoar, ve e 12(0.7Hy(9), (9:8)
0 0
¢ e L*(0,T; L*(Q)), £(0) = &(T) =0,
and the initial conditions
u(0) = u°, v/ (0) = u'
Here, A
(A.8) = alt.0.9) = [ et SR (9.9
and
Pu = cu' + dzgs + fu (9.10)

Theorem 9.2 Let
u’ € H*(Q) N Hy(Q); u' € Hy(Q); h, ' € LY0,T; L*(Q)).
Then there ezists a unique weak solution u of Problem (9.7) in the class
u € L0, T; H*(Q) N Hy(Q)), v € L=(0,T; Hy (), u” € L>=(0,T; L*(2)).

Theorem 9.2 is showed by applying the Galerkin method with two estimates and the

below remark.
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Remark 9.4 The Green’s formula gives

0 1 [ 0b;
We have
Gy | @) = Gt ) = d ) - a6 )
la/(t, u(t),u"(t))| < %Hu(f)”Q ol ()12

where 1 is an arbitrary positive constant. Theorem 9.2 permits to obtain the following

result:

Theorem 9.3 Let
u’ € Hy(Q), u' € L*(Q),h € L*(0,T; L*(2)).

Then

(1) There exists a unique weak solution u of Problem (9.7) belonging to the class
u € C(0,T; Hy(Q) N CH0,T; L*(Q)).
(17) The linear application

HYQ) x I3(Q) x LN0,T; 1(©) — C(0,T; HA®) 0 CH0, T I2(9),
{u® u',h} = u
is continuous, u obtained in (7).

(1ii) The solution u found in (i) satisfies

1 1 1 1 1 [t
_|ul(t)|2 + _a(tv u(t)’ U’(t)) = —|U1|2 + —G(O, u07 uO) +5 a'(s, u, u)d8+
2 2 2 2 2 Jo

t 1 [t/ ob t
+/O(h,u’)ds+§/0 (axiu/,u’) ds—/o(Pu,u’)ds,

where Pu was defined in (9.10).

Proof. Let (u)), (u,), (h,) be sequence of vectors of H*(Q)NH(Q2), Hg(Q2) and W1(0, T L*()),

"
respectively, such that

up — v’ in Hy(Q), uy, — u' in L*(Q),

(9.11)
h, — hin L'(0,T; L*(9)).

Denote by u, a solution obtained in Theorem 9.2 with data ufw u}” h,. Then we have

u, € C(0,T; Hy (Q)) N CH0,T; L*(Q)).
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Developing (Ru,,,u;,) = (h,u,,), using Remark 9.4, part (i) and

1d 1
a(t,u,u') = =—a(t,u,u) — éa’(t,u, w)

we obtain identity (4i¢) with w,, more precisely,
1 t t
Bu(t) = B,0)+ 5 [ dls.uuds+ [ (i )is+
0 0

1 [t/ob , !
- . ds — P "Vd
+ 2/0 (a%u”,up) s /0( uu,u“) s,

1 1
Bult) = S () + Sa(t, (1), u, (1),
(We can also obtain identity (9.12), since u,, is regular, applying the energy identity of
Lions and Magenes [43], p. 298).

Using the smooth conditions (9.6) on the coefficients of R in (9.12), we get

(9.12)

where

t t
E,(t) < E,(0) +/ |huHu;\ds + C’/ E,(s)ds
0 0

hence, by Gronwall inequality,

Eu(t) <

E(0) + (/OT ]huydt>2] €T (9.13)

where C'is a constant independent of p and t € [0, T].
Clearly, if we repeat the arguments used in the notation of (9.13) with u, — u, instead

of u,, we obtain
[ (1) — o (1) + alt, uu(t) — uo) (1), wu(t) — ue(t)) <

T 2 (9.14)

<2 [\ub —uy [+ a(0,u, — ug,u, —ug) + (/0 |hy — haldt> ] oCT
Taking the limit in this expression and considering the convergences (9.11), we find a
function u such that

> win C(0, T HA(Q));

ul, — ' in C([0, T]; L*(2)). (8:19)

m AL

These convergences are sufficient to complete the proof of theorem, except uniqueness. In
fact, if we take the limit in (9.8),(writing with u, instead of u,) in (9.11) and using (9.12),
we obtain (), (ii), (7i7) of the theorem. The uniqueness is proved by using a method due
to M.L. Visik and O.A. Ladyzhenskaja [19] (see also [12]).
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Next we consider a problem that will be used in the study of regularity for the solution
u of Problem (%) of the Introduction. This is,

Ru =1 in Q,
w=0in%, (9.16)
w(0) =0, «'(0) =0 in Q.

The weak solution u of this problem has the regularity (7) of Theorem 9.2 if h’ € L'(0,T; L*()).

We have the following estimate:

Theorem 9.4 Let
h e L*(0,T; Hy(Q)), h' € L*(0,T; L*(£2)), h(0) = 0.
Then the solution u of Problem (9.16) satisfies
T
lu()]| + [u'(t) = h(t)] < C/ |h]ldt, vt € [0, 1], (9.17)
0
where C' is a constant independent of u and h.

Proof: Theorem 9.3 gives

%\u’(t)|2 + %a(t,u(t),u(t)) = %/0 a (t,u, u)ds —i—/o (R, u')ds+

0.18)
1 t abz t (
+ 5/0 ((%iu',u') ds _/0 (Pu,u')ds
where Pu was defined in (9.10).
By integration by parts on [0, ¢] and noting that h(0) = 0, we have
t t
/(h',u’)ds = (h(t),u'(t)) —/ (h,u")ds
0 0
hence
t 1 t
/ (B, u')ds = (h(t),u/(t)) — =|h(t)]? +/ (h, Au)ds+
0 2 0 9.19
t au/ t ( ' )
h,bi— | d h, Pu)d
—l—/o(,axi)s—l—/o( w)ds
because

ou’

"= b — Au— Db
u U oz,

— Pu.

Combining (9.18) and (9.19), and noting that

¢ 8u’ t 8bz ’ ¢ oh ’
/0 (h,bia—x) ds = —/0 <h, 8xiu> ds —/0 ((Tm’biu) ds
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one has

1, 5 1 1,
I (6) — n() +§a(t,u(t),u(t))—§/ o/ (5, u, u)ds+

0b t Ob;
i1 A _ Ll — 2
+/0 (39&1 )ds+/0(h, u)ds /0 (h 8:62 )ds (9.20)
ah t t
—/ ( bu)ds+/(h,Pu)ds—/(Pu,u’)ds.
0 Ox;’ 0 0

Making 6 = v’ — h in (9.20) and substituting «’ by € + h in this equality, we obtain

after direct computations
1 , 1 1t
—10)|* + =a(t,u(t),u(t)) == | d'(s,u,u)ds+
2 2 2 Jo

e[ [(Baa)a- [ (Zao)ae o
_/Ot(c9,9)d8—/0t(ch,9)ds—/0t (dig_;,g) d8+/0t(fu,0)ds

Bound each term on the right side of (9.21) and use the coerciveness of a(t, u, w). Then

the equality (9.21) becomes

1 1 t t
S000F + 51O < C [l + 00 +C [ (Jul®+102)ds

where C' is a constant independent of u and h. The Gronwall lemma applied in this last

inequality gives the estimate (9.17).
|

Remark 9.5 Let

aij(z,t) = a; (:c T —t), A(t) = A(T —t)
bi(z,t) = ( —t), é(x,t) = —c(z, T — 1) (9.22)
( ) ( t)u f(l’,t):f(l’,T—t), ]~l($,t):h($,T—t)

and

N I _on - (9.23)
Ra:a”+Aa+bia—u+éa’+di Ou + fa.

Clearly if a;;, b;, ¢, d;, f satisfy the hypotheses (9.6) then a;;, b;, ¢, d;, f satisfy the same
hypotheses and reciprocally.
We introduce the problem
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Ri=hin Q,

u=0in X, (9.24)

a(T) = u°, @ (0) = —u' in Q
and define in similar manner as in Problem (9.7) a weak solution @ of this problem. A
direct computation shows that u is a weak solution of Problem (9.7) if and only if @ is a
weak solution of Problem (9.24), u and @ related by (9.23). Thus we can prove a Theorem
9.3" and a Theorem 9.4’ for the weak solution @ of (9.24) analogous to Theorem 9.3 and

Theorem 9.4.
|

9.4 Inverse and Direct Inequality

The objective of this section it to obtain estimates for g—:j, u the weak solution of the
problem
L*u = hin Q,
u=01in X, (9.25)

u(0) = u”, ¥/(0) = u' in Q
where L* the operator introduced in (9.2).
In the sequel of the section we will work with the operators L* and L. We observe that,
since the coefficients of L* satisfy the condition (9.6), all the results of Section 9.3 remain

true when one changes the operator R by L*.
With the notations

aij = (05 — K wiw k™2, by = 2Kk (9.26)

and after some computations, the operator L* assumes the form

. a0 Ju 10 ,
L'u=u oz (aw axj) + 2(%i(blu )+

(9.27)
10 / 9 127,—2
- 5o, (biu) + P (nk""k"zu).
One has
aoé}fj < aij&{j < alﬁifj, ‘v’{x,t},V§ € Rn, (CL() > 0) (928)

The energy of system (9.25) is

Bt) = %|u'(t)|2 + %a(t,u(t),u(t)) (9.29)
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in particular

1 1
Eﬁ:Em):émw?+§aauRw)

Theorem 9.5 Let u be the weak solution of Problem (9.25). Then
(i) if h =0,
Eye™® < E(t) < Epe®, Vt € [0, 00),

T 2
2y + (/ \h\dt) ]eco, Wt [0,7],
0

Co = 2(1 + 7']{?1M2 + T2M2 + naok%)(aokg’)_l(ll + l2)+

(id) if h # 0,
E(t) <

where

+ 200 M +n)(nT + 7+ k) (a@ kA NI + 1)

(see notations of Section 9.3 and 9.29).
Proof. We will prove the part (7). The second part will be obtained with the same
arguments. Differentiating with respect to ¢ the identity (#ii) of Theorem 9.3, we find

/ 1 / 1 ([ 0b; ool /
E'(t) = 5@ (t,u,u) + 5 (axiu ,u) — (Pu,u)
or )
B = —kh (29 00N g e | 28|
y (9.30)
+nk'kHu|? — (dia—xi,u') — (fu,u).
Recalling that
di = [(n+ DK = WKk 22, f = [n(n + D) — nk"k]k~?
(see (9.2)), it follows from (9.30)
[E'(1)] < G(HE()
where
G = 2(|K'| + M2|K'K"k — k| + naok?|K'|) (agk®) '+ 9.31)
1 1 1 931
+ 202 M +n)|(n+ DE? — K"k (a2 A2k~
or

—GE() < E'(t) < GIOE(®). (9.32)
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Using the Hypotheses (H3)-(H5), Section 9.2, on the function k£ we can bound each
term that define G and (9.31) gives

/ TGt < (9.33)

Combining (9.32) and (9.33) we conclude the proof of the theorem.

Next, one express an identity which will the fundamental to obtain estimates for g_Z'

Theorem 9.6 Leg q = (q;) be a vectorial field on Q, q € [C*(Q)]". Then every weak
solution w of Problem (9.25) verifies

1 [r ou\ >
Q/O/F(lijl/il/qul/l <%> dl'dt =
=(u +li[bu] Ou ‘T+
- 2 a (3 7qla 0
oq [ 2 ou Ou
// 8:61( — Gijp - on )dade—
12
(n+1 // i 8u ql—dxdt—l—

ou O 8u ob; Ou
+/O/Qazja—x]a—xza—xldl'dt+—/ axzﬁ_lqlu diL‘le‘

1 r 5’1)2 8u , ab 8(11 ’
—// 8x18xl u'dxdt + = // oz, 8561 u' drdt+

ou 8ql , T ,0q; Ou
// "Ox; 83:'1 wdwdt = 2 // biu 8:01 axldmdt_

T k/2 aQZ 2

Remark 9.6 In order to facilitate the writing, we denote 5 by D; and the product of
the functions @, by ¢ - .

(9.34)

Proof. First, one proves (9.34) for the solution u of Problem (9.25) with smooth data,
that is, u given by Theorem 9.2. Then, the general case will follow by taking the limit in
the identity with smooth solution. Thus u(t) € H*(Q2) x HE(2), u'(t) € H}(Q).

Multiply the equation (9.25); by ¢ Dju. On each term of the product L*u - ¢ Dju one

uses the Green’s formula or integrates by parts in t. It gives: For the first term

T T 1 T
//u"qlDludxdt = (u/,qlDlu)‘ + —//(qul)ulzdxdt (9.35)
0 Jo 0 2JoJa



113

For the second term

— (Dilai; Djul, g Div) = (ai; Dju, DigDyu)+
(9.36)
+ (@ijDju, qD; Dyu) —/ a;; Dju - gDy - v;dl.
r
Applying the operator D; on a;;D;z - ¢D;z and noting that a;; = aj;, we deduce by using
the Green’s formula in the second integral on the right side of (9.36), that
2(aijDju, qD; Diu) = —(Dyaij - Dju - q, Diu)—
(9.37)
— (@ijDju - Dyqp, Diu) —|—/ a;;Dju - qD;u - ydl.
r

One has that Diu = 1;3% on I' (see J.L. Lions [39]), therefore

1
5/ a;;Dju - qDu - vdl’ —/ a;;Dju - gDy - v;dl'—
r r

1 D\ 2 (9.38)
— 5/1* ;i ViViquy (%> drl’.

A direct computation on a;; gives

1
- §(Dlaij -Djz-q,Diz) = (—iﬂiDiU, QIDZU) (9.39)

Combining (9.35)-(9.37), we find the expression

— (D;lai;Djul, g Diw) = (a;;Dju, DiqDyu)+

12

+ (ﬁxiDianZDlu) — §(aiijU -Dyqi, Diz)—

1 ou\’
— §/Fa/ijyiijIVl (5) dF

—_

(9.40)

For the third term

17 17
— / / D;(ba) - qDyudxdt = —= / / byu'D;q; - Dyudxdt—
2o Ja 2 Jo Ja

LT (9.41)
— —//biu’qlDiDludxdt.
2 )0 Jo

For the fourth term

1 /7 1 T
5//[Di(biu)]/QZDldedt = §(Di[biu]7(IlDlU) -
0Ja 0

Ve (9.42)
— = / / D;(bju) - q Dy’ dzdt,
2 Jo Ja
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and
1

_ 5(
1
= 5([Dibi'QZDlu + Dby qDiu + by Dy Diu), u')+ (9.43)

D;(bju), gDu') =

1
+ 5([uDzszlql + bipiU'qul], u’).
(Note that D;D;b; = 0.) From (9.42),(9.43) it follows that

1 [T 1 T
! / / Dy (b)) quDyudrdt = (D lbea], quD)| +
2 0JQ 2 0

1 /T
+ —//Dibz- ~qDyu - v drdt+
2.Jo Ja
e I
+—//lei-qlDiwu'dxdt—i——//bi~qlDlDiuu’dxdt—|—
2.Jo Ja 2o Ja
17 17
+ = / / uD;byDygru’ dxdt + = / / b; DywDyqiu’ dadt.
2.Jo Ja 2o Ja

If we add (9.41) and (9.44), one observes that the integrals involving D;D;u are can-

celled out.
For the fifth term

// ( ) qDudxdt = ——//n —u2quldazdt+
// 12 xzDu -qiDyudxdt.

Add (9.35), (9.40), (9.41), (9.44) and (9.45). As this addition is equals to fofﬂ hq Dyudzdt,
we obtain the identity (9.34).

(9.44)

(9.45)

[ |
Let us consider again the notation of Section 9.2. The next inequality that we derive

is named direct inequality for Problem (9.25).

Theorem 9.7 Let = any weak solution of Problem (9.25). Then 3* € L*(X) and

[Z(%Daﬁﬁgc@+m %+(AﬂMﬁy

where C' is a constant independent of u and T.

1 T
+@%/ﬁwt
0

Proof. Theorem 9.5, part (i7), furnishes the estimate

2

|/ (t)|? + a(t,u(t),u(t)) < CEy+ C (/OT |h|dt> :

vt € 10,T), (C = 4e®).

(9.46)
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Consider the identity of the Theorem 9.6 with a vector field ¢ such that ¢ = v on I'. One
observes that, using the estimate (9.46), the integrals on € of (9.34) can be bounded by

Ey+C (/OT |h|dt>2] :
e /Owﬂ |

2

C

the integrals on ) by
C(T+1)

and the integral [, hqi 2% dadt by

L T T
CE; / |h|dt + C (/ \h\dt)
0 0
On the other side

1 (7 2 1 (7 2
—//aijyil/julyl % dl'dt > —ao// 8_u dI'dt.
2 Jo Jr v 27 Jo Jr \Ov

The above boundedness give the theorem.

Remark 9.7 The Theorem 9.7 with E(T') instead Ey is also true for the weak solution u

of the problem

L'u=hinQ,

u=01in X,

uw(T) =u°, /(T) = u' in Q.
For that we introduce the function k(t) = k(T —t). With the coefficients a;, b;, ¢, di, f of
L* we determine the coefficients a;;, b;, ¢, d;, f given by (9.22) of Remark 9.5. We then
observe that the operator L* with coefficients a;;, b~i, c, czi, f and the operator L* have the

same form. The result then follows by applying Remark 9.5.
In order to show the inverse inequality one proves the following previous result:

Lemma 9.1 Let 2° € R™. Then every solution u of Problem (9.25) with h = 0 verifies

17 ou\”
5/0‘\/FCLUVZI/]I/l(xl—.’IZ?) (%) dl'dt =

r , 10 o Ou  n—1 T

0

12
+(n+1) // r Gu xl—ml)a dxdt— (9.47)
81‘[
K 6u ,
—(n+1) // kal — o) ujdzdt+

T 12
(n + D) uv' dxdt — M an—u2dxdt.
&rz 4 0o K2
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Proof. Consider the identity of Theorem 9.6 with the particular vector field ¢(z) = z—x°.

Using the same arguments and notations of the proof of Theorem 9.6 and making the

decompositions

n (T , T
° —//(u’ —aiijuD@-u)dxdt—i-//aiijuDiudxdt—
0Ja

n—1 r
0

1
. //Db cundzdt = nt //Dbmudwdt+
n—1
+ //Db cun dadt,

. //n—u2d dt = ”H// —u2dxdt+
”_1// Y 2dedt

we obtain
u , 1 T
awyzyjmql dth =(u+ —Di[biu],qlDlu ‘04—
+/ Et)dt+ (n+1) // 12 —x; Dywq Dyudxdt+
0
—(n+1 // — Dyuqu/ dxdt+ //Dibi/uu'dxdt—
4 JoJa
1)
_ ’ / / N 2dzdit (9.48)
n—1 /2
+ (u — a;;DjuDu)dxdt+
(n— 1 ( ,
b D;u-u'dxdt + D ;b un dedt—
_ (=Y / / Y wldadt.

Multiply the equation L*u = 0 by u and integrate on (). Use the Green’s formula or the

integration by parts in ¢ on each term of the product L*u-u. This yields:

//u”udxdt (', u) //u’zd:vdt

. /0 (A()u, u)dt = /0 alt, u, u)dt,
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T
o—//Dbu cudzrdt = ( i[biul, )‘—
——//Db uudwdt——//bDu A dxdt,
1 , 1 ,
° —//Di[biu]-ud:rdt:——//biuDiu,
2 /o Ja 2
T k/2
o / / D; {nﬁxu] udzdt = / / —uldxdt.
)

The addition on the last five equalities and the multiplication of the result by gives
, 1 oo M= 1 ‘T B
(u + 2Dz[b,u], )|, =
-1 T
= M / /(u'2 - az-ijuDiu)dde
(n :
+ D ;biud dxdt —|— b D;u-u'dxdt—
-1
_n / / = 2dadt.

Using (9.49) in the last four terms on the right side of (9.48), we obtain the lemma.

(9.49)

|
In order to state the inverse inequality for the Problem (9.25) we introduce some

notations. Theorem 9.5. part (i), says
ClEQ S E(t) S CQE(), Vt € [0,00) (01 = 6_00, Cg = GCO) (950)

The time Tj is defined by

1
T(] = [2@5 R(SCO) + K1 + K2 + Kg]Cngl (951)
where .
% 27[(n — )M + 2R(z°) + 222 M R(z°)]
1= 1
a()]{?())\l5
1
Ky — 211 (n + ].)R(I’O)[TM + CLS ko]
2T aok'%
Ln(n + 1)[rM + ag ko]
K3 =

aok2A?

Remark 9.8 We observe that if the function k =1 then C; = Cy =ag =1, K1 = Ky =
K3 = 0 that implies Ty = 2R(x°). This is the time Ty found in J.L. Lions [39] and in V.
Komornik [26] for the equation v — Au = 0.
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Theorem 9.8 Let T' > Ty. Then every weak solution u of Problem (9.25) with h = 0,

verifies
1 . T ou\’
= — | dl'dt > C{(T — Ty Eyp.
2R(x )al/o/r(zf)) (8y) > C( 0) Eo

Proof The principal idea is to bound, using estimate (9.50), each integral on @ of the

identity of Lemma 9.1 by an expression of the form
CEy / |K'|dt.
0

We start bounding the first terms of the above identity. We have, making the same

calculations as in [38] and [39],

—1
‘ <u’, (z1 — 2 Dyu + n 5 u)

1
< g]u’|2 + ZRQ(xO)aala(t, u, ).

R(z0)

1
2
0

Making p = and using the estimate (9.50) in the above inequality, we get

Qa

-1 _1
‘ (u/, (z; — 2)) Dy + n 5 u> < R(z%)a, > CyEp.

that implies

—1 T 1
(u’, (z; — 2)) Dyu + z 5 u> ‘0 > —R(2%)a, > CyFy. (9.52)

Applying the Green’s formula, we derive

-1 —1
(Di[biu], (z; — 2)) Dyu + z 5 u) _ I (u, b;D;u)+

1 2k’
+ 5 (_TU —+ leZu, [l’l - x?]DlU)

and direct computations gives

n—1 E

° (u,b;Du)| < (n — 1)7’MC’2—01,
aokf())\f
1
1 2K 14+ A2M)CLE,
o |- (——u+ b;Dyu, [v; — x?]Dzu)’ < 27’R<£L‘0)( A )102 0
2 & aok’o)\f

that implies

0 n—1 T
D;[bsu], [x; — 2] Dyu + 5 U ‘ >
0
1 (9.53)
> —27[(n — 1)M + 2R(2°) + 202 M R(z°)] CQEol :
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The integrals on @ of the identity (9.47) have the following bounds, after use of the

estimate (9.50) and direct computation:

k
(n+1) // ﬁx@-Diu(:cl - x?)Dludxdt’ <
0Jo

(9.54)
CyE,
< 2l (n+ 1) TMR(2*) 22,
(Ioko
T k!
(n+1) // E(:cl — x?)Dlu-u’dxdt‘ <
0Jo
9.55)
Oy, (
< 2li(n+ 1)R(z")—5—,
CLS ko
E
‘—//D b;-uu da:dt' <hn(n+1)— ¢, 01, (9.56)
2/€0)\2
E
‘— // 2dxdt‘ < lLn(n+1)M ¢, o (9.57)
aok?g/\f
Thus, using the estimates (9.52)-(9.57) in the identity (9.47), we obtain
I o [Ou?
- CLZ‘]'VZ‘V]‘VZ(I'[ - ZL’l) - dl'dt Z Cl (T - T())Eo. (958)
2 Jo Jr v

The left side of (9.58) can be bounded as in J.L. Lions [39] by

/ / » (@) drdt. (9.59)

Combining (9.58) and (9.59) we finish the proof of the theorem.

9.5 Exact controlabillity

In this section we conclude the proof of Theorem 9.1. Let L the operator defined in
(9.1), that is

Lu=u"— 9 < %> +bi—— Ou +[(1 = n)k® — KKk Ou

9z \ "oz, ) T Vo, o,

where a;;, b; are defined in (9.26). Consider the problem
Lu=0in Q,
u=uvin X, (9.60)
u(0) = u”, ¥/(0) = u' in Q.
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First of all, we define the concept of solution of Problem (9.60). Formal integration by

parts on () gives
/Q Lu- sdwdt — / W (0)2(0)d + / w(0)(0)dz—
0
_/Qbi(o)aazl dx+/u—dth+ (9.61)

GVA
+ / whdzdt
Q

where z is the solution of the problem

L'z =hin Q,
z=01in X, (9.62)

and

0z
5. = i@ t) 5 -
J

If h € L*(0,T; L*(Q)), by Theorem 9.3 and Remark 9.5, we have that the solution z of
Problem (9.62) verifies

V. (9.63)

2 € O([0,T); HY(9) N €' ([0, T]; L(2)

/ T (9.64)
O+ =0 <C [ fha
and by Theorem 9.7 and Remark 9.7,
0 0
C e I3y, ' i < 0/ ||t (9.65)
o
with C' a constant independent of z and h.
Motivated by (9.61)-(9.65) we introduce the following definition: let
u’ e L*(Q), u' € HH(Q), ve L*(X) (9.66)

We say that u € L>(0,T; L*(Q2)) is a solution defined by transposition of Problem
(9.60) with data u®, u', v if

/0 (u, )t = (u?, 2(0)) — (u?, 2/(0))—

2k'(0)  ou’ T 0z
_ <—k(0) .1'18_%72(0)> —A v, % LQ(F)dt

for every h € L'(0,T; L*(2)) where z is related to h by Problem (9.62).

(9.67)
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Clearly the above solution u is unique. We also have from (9.64) and (9.65)

Jull L o,r522(0)) < C ([0°] + lJut -1 + 0]l 22¢s)) (9.68)

where C' is a constant independent of w.

In order the prove the regularity of the solutions defined by transposition we introduce
a previous result. Let h € D(Q), D(Q) space of test function on @, and z the weak solution
of the problem

L*z=hin Q,
2=0in ¥, (9.69)
2(0) =0, 2'(0) =01in Q.

From Theorem 9.4 we have that z verifies the estimate
T
[2() || + 12 (t) — h(t)] < C/ |hlldt, Yt € [0,T], (9.70)
0

where C' is a constant independent of z and h. In virtue of Theorem 9.7 we obtain from
(9.69) that = € L*(%).

Lemma 9.2 The solution z of (9.69) with h € D(Q) wverifies

T
\ <c [ nja
L2() 0

where C' 1s a constant independent of z and h.

0z

ov

Proof. We have by Theorem 9.6 that z verifies the identity (9.34). In what follows we
bound each term of this identity by

2

T
C (/ Htht) , C constant independent of z and h. (9.71)
0
We obtain by estimate (9.70) that
p 1 0z \ |T
(z + 3 [b 2], q v o) 1o
The equality 2> = (2 — h)? + 2h(2' — h) + h? gives

/ / 0% 2 gt — / / qu ' h)2dadtt
1y
8ql a(ﬂ 2
//&m h)dadt + - //8$lhd dt

is bounded by (9.71). (9.72)

(9.73)
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On the other hand, the last integral on the right side of (9.34) after integration by parts

on () becomes

T
//hql—dmdt / —qlz dxdt+//h @ dedt
0 Q

Then the equality 2z’ = (2/ — h) + h and Remark 9.4, part (i) applied in this last two

//h'qla—dxdt / gh( — h)dzdt—
i i (9.74)

——//8qlh2d dt — //8ql J — h)dxdt

The addition of (9.73) and (9.74) implies

// % 2, dt—//hql—d:cdt
/ / O (s _ 2t — / / T (2 — h)dadt
Oz 0 Jo O

The estimate (9.70) applied on the right side of (9.75) permits to bound the left side of
this equality by (9.71).

The other integrals on the right side of (9.34) can by bounded by (9.71) after use of
the equality 2’ = (2 — h) + h and estimate (9.70). Thus the identity (9.34), (9.72) and the

last two boundedness give the lemma.

integral furnish

(9.75)

Theorem 9.9 FEvery solution u defined by transposition of Problem (9.60) has the requ-
larity
w e C([0,T]; L2(9)) 0 ([0, T]; H(2) (9.76)

and the linear map
L*(Q) x HYQ) x L*(Z) — C([0,T]; L*(Q))nCY([0,T); H1(Q))
{u® ul, v} W

1S continuous.

Proof. First we prove that v € C([0,7T]; L*(Q2)). Fix u°, u',v in the class (9.66). Let
(up), (u),), (v,) be sequence of vectors of Hy(Q), L*(2) and H§(0,T; H*(T')), respectively,
such that

u, — v’ in L*(Q), u, = u' in H'(Q),v, = v in L*(X). (9.77)
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Let 9, be a function in HZ(0,T; H*(2)) such that yv, = {v,, 0}, 7 function trace on T,
and y,, the solution of the problem

Ly, = —Lv, in Q,

yu = 0 on X,

y,(0) = u,’, y,(0) = u,' in Q.
Then by Theorem 9.3,

Yu € C([0,T); Hg () N CH([0, T]; L*(<)).
Then we have that u, = y, + 0, is the solution defined transposition of Problem (9.60)
with data uf), u), and u, € C([0, T]; L*(R)). Therefore, by (9.68),
lu = wullzeo iz < C [Ju’ = uul + ot = wyllm—@) + v = vallr2m)] -

Taking the limit in this expression and using convergences (9.77) and the regularity of w,,,
we obtain that u € C([0,T7; L*(52)).
Now we consider h € D(Q) and z the weak solution of the problem

L*2=hin Q,
2=0in ¥, (9.78)
2(T) =0, 2/(T) =0 in Q.

Then by Theorem 9.4 and Remark 9.5 we have that

T
Iz + 12'(t) = h(t)] < C/ [[h]dt, vt € [0, T], (9.79)
0
and by Lemma 9.1
0z T
— <C ||h||dt. (9.80)
ov L2(s) 0

The constants in (9.79) and (9.80) are independent of z and h.
We have that v’ € H~1(0,T; L*(Q2)) because u € L*(0,T; L*(2)). Then

T
(u',h) = —(u, 1) p20) = —/ (u, h')dt.
0

As wu is a solution defined by transposition on Problem (9.60) one has from (9.78)

/0 (u, W )dt = (u*, 2(0)) — (u°, 2'(0))—

2K'(0)  Ou® T 0z
_ <—k(0) mza—%,z(0)> —/0 v,% L2(r)dt



124

From estimates (9.79) and (9.80) we then obtain

T
0/ 1) < C [+ [y + Bolos] [ Il vh e DIQ)
This implies by the density of D(Q) in L*(0,T; H}(Q)) that
u' € L0, T; H(Q))

and
/|| Lo o,sm-1 () < C [[W°] + [[ut | -1 + 0]l 2] - (9.81)

By similar arguments used as in the first part of the proof and noting that v/, € C'([0,T]; H~(2))
we conclude that «' € C([0,T]; H1(f2)).
The continuity of the linear application {u’ u',v} + wu is obtained by (9.68) and
(9.81).
|

Remark 9.9 [t is clear that we can also define the solution defined by transposition u of

the backward problem
Lu =0 1in Q,
U= on X,
uw(T) =u°, W/ (T) =u" in Q
in a similar manner as in Problem (9.60) and Theorem 9.9 is also true for this solution

u. This is a consequence of Remark 9.5 and 9.7.

Now we finish the proof of Theorem 9.1. Let ¢ be the weak solution of the problem
L' =01in Q,
p(0)=¢°, ¢'(0)=¢' in O

with {¢% p'} € H}(Q) x L*(Q). Then by Theorems 9.7 and 9.8 one has

p € C([0,T]; Hy(Q)) n CH([0, T); L*(2)),

% ¢ [*(2) and
2

dp

ov

< Cy(T + 1) E, (9.83)

Ci(T —Ty)Ey < ‘
L2(%(29))
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where C, Cy are constants independent of ¢. With ¢ one constructs the solution defined

by transposition 1) of the problem

Ly =0in Q,

b= g—f on X(z9),

0 on ¥\ X(a),
W(T) =0, ¥(T) =
Then by Theorem 9.9 and Remark 9.9, ¢/ belongs to the class

(9.84)

¥ € C([0,T]; L*(Q) N CH([0, T]; HH ().

(L, g) = - <w’(0> - 2:((0(;)3: 2 )+

// ayayAdthJr(w,L* ©)

We have

(9.85)

that implies
<w'<o> - Z,f(ff)’)xi R RUUTE

Dy
i s ——dl'dt.
//xo ajaxjy

The last expression induces the introduction of the following operator:

(9.86)

A HYQ) x LXQ) — HYQ) x L2(%))
[0 = A0 = {00) - 22022, —y(0)}.

By (9.86) and noting that

9o _ 00 ©
al’j JaV]’ ’
we obtain
(‘9@ 34,0
Qg a S <A{(p0, 901}7 {()007 901}> S a :
VL2 (s(0)) VilLz(s(e0))

This and (9.83) imply that A is injective. With {¢°, '} one determine the weak solution ¢
of Problem (9.82) and with %, the solution defined by transposition ¢) of Problem (9.84).
If we develop (L, @), one obtains as (9.85)

. 830 Oy
AL olb (3 / / ai; 221,28 aray
(M o'} {2 ') oy 0, B
and if we develop <L12, ©),

(M@, 0 {9 // %agp 8SDdrcﬁt
I'(z0) 8%
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Observing that

0 0
9 yj—(p on I,
ij

ov

we then obtain from the last two equalities that A is self-adjoint. Thus
A is an isomorphism from Hg () x L*(Q2) onto H1(Q2) x L?(Q2) (9.87)
Let {u® u'} € L*(Q) x H7*(). Then by (9.87), there exists {°, '} € HI(Q) x L*(Q)

such that W) du

M’ o'} = {Ul TR0 Y an 0} :
With {¢ ¢!} one determines the weak solution ¢ of Problem (9.82) and with 42, the
solution defined by transposition 1 of Problem (9.84). Then we have that u = 1) satisfies
all the required conditions of Theorem 9.1.

The expression (9.85) is justified by approximation’s arguments that hold for smooth
solutions ¢ and 1. Analogously for the other expressions. Thus we have concluded the
proof of Theorem 9.1.

|
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Chapter 10

Exact Controllability for the Wave
Equation in Domains with

Variable Boundary

10.1 Introduction.

In this chapter we are interested in the exact boundary controllability of the system:
' — Ati=0in Q,
: (*)

, W(0) =a" in Q

)

u=70i

(0) =

)
2 =

where @ is a non cylindrical domain of R"*!. The result is obtained by transforming the
problem @ in a problem defined in a cylindrical domain () and the showing that these two
problems are equivalent. The result in @ is studied by applying the HUM of J.L.Lions. !

Let Q be an open boundary set of R® with boundary I' of class C?, which, without
loss of generality, can be assumed containing the origin of R™, and & : [0, co[— [0, 00] a

continuously differentiable function. Let us consider the subsets §2; of R" given by
Q={zecRMz=k{t)y,yecQ}, 0<t<T < oo,
whose boundaries are denoted by I';, and @ the non cylindrical domain of R**,

Q= |J Qx{t} (10.1)

o<t<T

!This part is a paper that was published for one of Authors in Revista Matemaética, Universidad
Complutense de Madrid, 9 (1996), pp. 435-457.
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with lateral boundary

Y= mex{t

o<t<T

Graphically it wold be We have the following system:

Q=2 x(0,1)

[N Q t

Figure 10.1: Non-cylindrical Domain

=7 on %, (*)

2a
ot?

x +— U(z,0). Here v is the control variable, that is, it acts on the system (x) through the

where u” stands for and u(0), @'(0) denote, respectively, the functions x — u(zx,0),
lateral boundary 5.

The problem of exact controllability for system (x) states as follows: Given T' > 0 large
enough, is it possible, for every initial data {@° '} in an appropriate space to a find a
control v driving the system to rest at time 7, i.e., such that the solution u(z,t) of (x)

satisfies
u(T) =0, @' (T) =07 (10.2)

We show that system (x) is exactly controllable. Our approach consists first in trans-
forming (x), by using k(t), in a system defined in the cylindrical domain @ = Q2x]0,7T7.

This system will have the following form:

, 0 Ju ou’ ou .
o o (st ) + 0 + k0 =0 in
_ (+%)
u=vin X =Tx]0,T],
u(0) = u”, ¥/(0) = u' in Q.
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Remark 10.1 Here and in what follows the summation convention of repeated indices is

adopted.

Then we show that the study of the exact controllability problem for (x) reduces to the
study of the controllability for system (xx). The control v will be expressed in function
of a weak solution 8 of the wave equation in the non cylindrical domain @ For that, an
appropriate change of variables is needed.

The controllability for system (xx) was analysed in the Chapter 9. The Hilbert Unique-
ness Method (HUM) of J.L.Lions [39] is used in this analysis.

The existence of solutions of the initial boundary value problem for the nonlinear
wave equation in general non cylindrical domain @ was studied among other authors by
J.L.Lions [42], L.A.Medeiros [46], when @ is increasing and by C. Bardos and J. Cooper [3]
when @ is time like. A. Inoue [24] also analised this type of problems. The linear case was
treated by J. Sikorav [62] when @ is time like. He used tools of Differential Topology. The
exact internal controllability problem for the wave equation in non cylindrical domains
was treated by C. Bardos and G. Cheng [2]. They did not use HUM.

Remark 10.2 The non cylindrical domain @ that we have considered in (x) is time like
but it is not necessarily increasing or decreasing. This occurs because the derivative k'(t)
does not have sign condition. @ is named time like when the unit normal vector n = (1, ;)

to S, directed towards the exterior of Q, satisfies Ine| < |m2]-
The Plan of this Chapter is organized as follows.

e Main result.
e Summary of Results on the Cylinder.
e Spaces on the Non Cylindrical Domain.

e Proof of the Main Result.

10.2 Main Result

Let us introduce some notations (cf. J.L. Lions [39]). Let ¢° € R", m(y) = y — 3 and

v(y) the unit normal vector at y € I', directed towards the exterior of 2. Consider the sets

I'(y°) = {y e Tym(y) - v(y) > 0}, X(y°) =T (y°)x]0, T
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and the corresponding sets in the (z,t)-coordinates,
Ty(y’) =f{z €Tz =k(t)y, yeT(y°)}, 0<t<T

and

Y = |J ) x {t}
0<t<T
In the definition of T'(y°), - denotes the scalar product in R™. We represent by n = (1, ;)

the unit normal vector to i directed towards the exterior of @ and by v* the vector |Z—i|
Let
R(y") = sup [m(y)|, M =sup|y|

yeN yeN
and \; the first eigenvalue of the spectral problem —Ag = A\p, ¢ € H} ().

We make the following assumptions:

The boundary I" of Q is C? (H1)
and concerning the function k,
ke Wi (10, 00]) (H2)
0 < ko =infk(t), supk(t) = k1 < o0 (H3)
t20 >0
1

sup [K'(t)| =7 < — H4
up (8) = 7 < (H4)
I :/ |K'(t)|dt < oo, Iy :/ |E"(t)]dt < oc. (H5)

0 0

Hypothesis (H4) implies that the non cylindrical domain @ is time like. The unit outer
normal vector n(z,t) to S is given in Remark 10.5.

All the scalar functions considered in the chapter will be real-valued.
In @, @ defined by (10.1), we have the following system:

on (y°),
on £\ S(y°),

v
0
u(0) =@°, @ (0) = u" in Q.

(10.3)

In (10.12) we will give an explicit value for the minimal controllability time T depending

on n, R(y°), A1, the function k& and on the geometry of 2, and in (10.23), an isomorphism
Ap s DA(%) x H Y Q) — HY () x L2(), A{a,a'} = {6°, 6"}

which allows to compute the control ¥ for the initial data {u°, @'}.

Now we state the main result of the problem.
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Theorem 10.1 We assume that hypotheses (H1)-(H5) are satisfied. Let T > Ty. Then,
for each initial data {u°,u'} belonging to L*(Q) x H (), there exists a control v €
L2(0,T; L*(Ty(y?))) such that the solution U of system (10.3) satisfies the final condition

(10.2). Moreover, the control U has the form v = 8—{ where 8 is the weak solution of the

problem "
0" — N0 =0 in Q,
6=0 nf]
6(0) =8°, §'(0) = 6" in Q

with A {@°, @'} = {6°,0'}.

The next three sections will be devoted to the proof of the above theorem.

10.3 Summary of Results on the Cylinder

Is this section we list the results on the cylinder ) that we will use in Section 5. Its
proof can be found in chapter 9.

We consider the operator

, 0 ow
L'LU = w — a—% ((I”(y,t)a—

Yj

ow’ ow

where
aij(y,t) = (65 — /f/Qyz'yj)k_2,
bi(y,t) = —2K'k Yy, di(y, t) = [(1 — n)k"” — K"Kk 2y,

Then for z test function on (), we have

0z 0 0
// (Lw)zdydt = //w [z — —( a;j 8y]> o —(bi2)" — o —(d;z) | dydt =
://wL*zdydt.
0Jo

We obtain
o 02 By Oz
b; bi— — 2nk'k ™12 4+ (2K — 2K"k) K2y,
33/@( #) = Oy T "y 3yi+
+ (2nk" — 2nk"k)k~ 0 (diz) = [K"k — (1 — n)k*|R™? Oz,
" ! oy ! "oy,

+ [nk"k — n(1 — n)k"* k2
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Thus L*z, the formal adjoint of L, has the form

L'z=2"— % (aij(y,t)g—yzj) + b,-(y,t)g—;i + Pz (10.5)
where
Pz = —2nk'k™'2 + [(n+ 1)k* — K"Kk ™2y, g;+
+ [n(n+1)K? — nk"k]R 2z
Let us consider the problem
L*z=hin Q,
z=0on X, (10.6)
2(0) = 2% 2(0) =2'in Q
with data
22 e Hy(), 2t € L*(Q), h € LY0,T; L*(Q)). (10.7)

A function z : @ — R will be called a weak solution of Problem (10.6) if z belongs to

the class

2€ L¥(0,T;€ Hy(Q)), 2" € L>(0,T; L*()),

satisfies the equation

t T T azl
| eha t 2, €)dt b eVt
o [lavscuns [ (5. )a

T T
P dt = h,§&)d
[ pngi= [ o
Ve € L*(0,T; Hy (), € € L*(0,T; L*(Q)), £(0) = &(T) =0
and the initial conditions
2(0) = 2%, 2(0) = 2.

Here (-, -) denotes the inner product of L*(), (-, -) the duality pairing between F’ and F,

F being a generic space and F” its dual, and

0z 0
j )

We observe that if z is a weak solution of Problem (10.6) then 2’ is weakly continuous
from [0, 7] with values in L?*(2). Therefore the above initial condition z/(0) makes sense.
The regularity of 2’ follows from 2’ € L>(0, 00; L*()) and 2” € L>=(0, 00; H~(Q)).

Concerning to Problem (10.6) we have the following result:
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Theorem 10.2 For each data z°, z',h in the class (10.7), there exists a unique weak

solution z of Problem (10.6). This solution has the reqularity:

2 € C([0,T]; Hy () N CH([0, TT; L*(2))

and
9z L2(0,T; L*(T)). (10.8)
8” ) Y
; 0z .
From (10.8) it follows that 5= belongs to L*(0,T; L*(T")) where
0z - 0z "
oy VY dy; "

We obtain all the above results it instead of Problem (10.6) we consider the backward

problem
L*z=hin Q,

z=0on X, (10.9)
2(T)=2° 2/(T)=z"in Q.
Let us consider the problem
Lu=01in Q,
u=gon, (10.10)
u(0) = u”, v/(0) = u' in Q
with data
u’ € LA(Q), ut € HY(Q), ge L*0,T;L*()). (10.11)

We say that u € L>(0,T; L*(2)) is a solution defined by transposition of Problem
(10.10) if

/0 (u, Bt = (!, 2(0)) — (u, 2/(0)) <2:(g§>ygiy z<o>> -

r 0
o)
0 aI/A LQ(F)

for every h € L'(0,T; L*(2)) where z is related to h by Problem (10.9) with 2° = z! = 0.
We have the following result:

Theorem 10.3 For each data u®,u', g in the class (10.11), there exists a unique solution

defined by transposition w of Problem (10.10). This solution has the reqularity

u € C([0, T L*()) N CH([0, T); HH()).
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We can change the initial data at time ¢ = 0 by final data at time ¢t = T in Problem
(10.10) and obtain the same above result.

In the sequel we introduce some constants in order to state the main result of this
chapter. By hypotheses (H3),(H4) of Section 10.2 one has that there exists a unique

positive constant ag such that

aij(yat)gigj Z 04051'53'7 V{y,t} S 2 x [Oa 00)7 v€ € R™.
With this and the notations of Section 10.2, we define:

Co = 2(1 + Thi M? + 7> M? + naok?) (aoky) (I + 1)
1 1 1
+ 202 M +n)(nT + 7+ k) (@@ kgAZ) T (1 + 1),

Cl = 6_00, Cg = GCO.

The minimal controllability time 7 is then defined by

1
To = [20 2 R(Y°) + K1 + Ky + K3]CoCy ! (10.12)
where )
K 27[(n — )M + 2R(y°) + 2A2 M R(y")]
1= i
Ofoko)\li
2l (n+ 1) R(y)[TM + o ko)
K2 = 2
Oé(]k?o
1
hin(n+ 1)[TM + ad ko)
K3 = T
Oé()k%)\f
We consider the problem
Lu=0in Q,

= { g on X(y"), (10.13)

0 on X\ X(y’),

u(0) = u’, u/'(0) = u' in Q.

We have the following exact controllability result:

Theorem 10.4 Let T > Ty, Ty given by (10.12). Then for every {u®,u'} € L*(Q2) x
HY(Q) there exists a control g € L*(>_(y°)) such that the solution defined by transposition
u of Problem (10.13) satisfies
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Remark 10.3 We observe that if k(t) = 1 then K1 = Ko = K3 =0, C; = Cy = 1
and ag = 1. Therefore Ty = 2R(y°). Thus, in this case Ty coincides with the minimal
controllability time obtained earlier by J.L. Lions [39] and V. Komornik [26] for the wave

equation u” — Au = 0.

Let ¢ be the weak solution of problem
L'¢=01in Q,
¢ = Oon X, (10.14)
p(0) =", ¢(0) =" in Q

with {p° @'} € HL(Q) x L*(Q), and v the solution defined by transposition of problem

Ly =0in Q,
%2 on X(y"),
_ ov
b= { 0on 3\ 2(y°), (10-15)
O(T) =0, ¢'(0) =0 in Q.

With these last two problems, we introduce the operator A,
H}(Q) x L*(Q2) — H1(Q) x L*(Q)
{%0' = Ml el = {W(O) - 2y 20, —¢(0)}

The proof of Theorem 10.4 is reduced to prove that the operator

(10.16)

A is an isomorphism from H{(Q2) x L?(2) onto H~1(Q) x L*(Q).

This is done by showing, by multiplier techniques, that the following observability inequal-
ity holds for 7" > Tj :

1 112 1 0 0 g
§|90 | +§@(0;90 ) <C
0 JI(y9)

where ¢ is the solution of problem (10.14). We refer to Chapter 9 for the technical details.

2

¢ dal’dt

ov

dp
Ovg

exact controllability for system (10.13). On the other side if p(y,t) = k™(t)0(k(t)y,t),
x = k(t)y, then

Remark 10.4 In system (10.15) we can consider instead g—f and to obtain also the

Iy (s a2 208 N
a—m(y,t)—(% k yzyg>k ayj(y,t)vz(y)—

00

= <5z] — ]{3_2]€,2ZL’Z'{E]‘> kn_I%(IE, t)VZ* (.ZU, t)
J

(10.17)
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and
Op ol
- k,TL+1 t).
gy (Wht) = Ko (,8)
(For the computations see (10.35). We note that the second member of (10 17) is not a

known derivative of the function 6. For this reason we con51der mstead in (10.15).

10.4 Spaces on the Non Cylindrical Domain
Let u : @ — R be a function such that

Q(a,t) = k()€ (% t) L €€ L0, T; Wi (Q)) (10.18)

Then we have u(t) € W;"4(Q) a.e t in |0, T[ and

n

[a() lwgainy = ko " ONE@) lwga)-

Therefore,
Csll€(@) lwgmaia) < [[u®)llwymay < Call€@) lwgma() (10.19)
Here and in what follows C3, C, will denote generic positive constants which are indepen-
dent of w and &.
We denote by LP(0,T; Wy™(%)) (1 < p < o0, 1 < ¢ < 0o, m a non-negative integer)
the space of (class of ) function  : Q — R such that there exists £ € LP(0, T; W™(Q))
verifying (10.18), equipped with the norm

1
T »
[l Lo .rwira ) = (/o H“(t)HIvjvg”’q(Qt)dt> , 1<p< oo

1@ oo o,mwia () = esssup [[T(t) || wrmaq,)-
t€]0,T]

By (10.19), the space X = LP(0,T; W;"?(€);)) is a Banach space and the linear map
LP(0, T, WI™(Q)) s X, € s UE (10.20)

is an isomorphism.

We write C([0, T; W5™"(£2;)) to denote the closed subspace of L>(0,T; W™ (€;)) cons-

tituted by functions @ such that the corresponding & given (10.18) belongs to C'([0, T]; W™ (Q2)).

The dual space of X = LP(0,T; H} (%)) (1 <p< o0, 110 + ]% = 1> will be identified
with L' (0, T; H~'(£),)). In what follows we characterize the vectors of this space. In fact,
we have by the properties of U defined in (10.20), that if S € X’ then there exists a unique
R e LY(0,T; H'(Q)) such that

<S7a> = <Ra §>a gzu_lﬁ'
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and
Gs||R]| < |IS]| < Cul|R]].

To show that, it is sufficient to take R = U*S where U* is the adjoint operator of &/. On
the other side, with R we define the operator P :

(P(t),@) = (R(t),), @ e Hy().

where B(y) = k™(t)a(k(t)y). Then
Cs||R() | -1() < ([P 5-1(00) < CallRO) |10
since
Csl|Bllar ) < @l g < Call Bllaa@)-

Thus, by identifying S with R and R with P, we obtain that the space L” (0, T; H='(Q,))
is constituted by the functionals S such that

S0, T[— H~'()), S measurable

3R € L7 (0, T; HY(Q)) satisfying (S(t),a) = (R(t), 8),

ae. tin ]0,T), Bly) = K" (Da(k(t)y)
and the norm is given by
1

T
P ( / |!S<t)\|§;_1(9t)dt) <o

1S\ oo 0,755 -1(0,)) = esssup [[S() || r-1(a,)-
t€]0,T']

The space C'([0, T]; H'(£2;)) will be defined as the closed subspace of L>=(0,T; H~(€;))
constituted by the functionals S such that its corresponding R belongs to C([0, T]; H=(2)).
Let u : @ — R be a function and

Wz, t) = u <%t) L uiQ R
" W (x,t) = _%%% (%t) o <%t) . (10.21)

Let w € LP(0,T;L3*(§%)), 1 < p < oo, be such that & belongs to LP(0,T; H~(R)),
where UE = u. Let u = k"¢, that is,

Uz, t) = k"(1)¢ <%t) —u <%t) .
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Then u € LP(0,T; L*(Q)) and «' € LP(0,T; H*(2)). By (10.21) we have

@(0.8) = (- g +10,5)

where @ € H} () and B(y) = k"(t)a(k(t)y). Clearly, ' € LP(0,T; H~ (%))
In particular, if u € L?(0,T; Hy (%)) and «' € LP(0,T; H*(£2)) then

Ko oy
with @ € L*(Q). Clearly @ € L*(0,T; L*(Q)).
We denote by L?(0,T; L?(T;)) the Hilbert space of function

(@(t), Q)12 = <_k(t) 5 /’ﬁ>m(9)

7: X =R

such that there exists g € L*(0,T; L*(T")) verifying

B(a,t) = k" (t)g (%t) :

equipped with the inner product

T
(3, ®) 201120 = / (31), (1)) 121 dt.
0

Remark 10.5 The unit normal vector 1(z,t) at (x,t) € i, directed towards the exterior
of @, has the form

A, t) = {v(y), =K )y, v(y) L + K|y, v(y)[]

In fact, fix (x,t) € 5. Let ¢ = 0 be a parametrization of a part U of I', U containing
Y= % Then a parametrization of a part V of f], (x,t) € XA/, is @(x,t) = go(ﬁ) =0. We
have

V(e 1) = %{ww), K (), Vo).

From this and observing that v(y) = gigg‘, the remark follows.

Let v*(z,t) be the z-component of 7(z,t), |v*(x,t)] = 1. Then by Remark 10.5, one

has

Vi (a,t) = v (%) . (10.22)
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10.5 Proof of the Main Result

10.5.1 Weak Solutions and Solutions by Transposition.

In order to motivate the definition of weak solutions and solutions defined by transposi-

tion of the wave equation in ), we obtain some relations between functions. We consider

i(a,t) = u (%t) L O(x,t) = k()2 (%t)

B(a,t) = k" (t)g (%t) L 7:5 R

One has o _%yi% <%t) L (%t)t) (10.23)
0 (x,t) = —nk ™" 1( JE'(t)2 (% )_ (10.24)
— kTN OK (t)y ( ’t) TR ( ft)’t)

and

@z, 1) — Az, t) = Lu (%t) ,

~ ~ T
0" (xz,t) — NO(z,t) = k" (t)L*z | ——,t
(5.0) = 88w, ) = k0L (55t
where L and L* were defined, respectively, in (10.4) and (10.5).

With the above functions we obtain formally the following results: The change of

variable x = k(t)y gives

// @ — AR)bdadt = //szdydt (10.25)
Q4

T T R R
//wL*zdydt:// (0" — AQ)dxdt (10.26)
0Jo 0 Joy

5 0%
/ / i yzy] ay ' Vlngdt =
J

0
:// (5” - klszLBil'j)knJrlaa—V;@dth.
0 J1y Lj

J
The Green’s formula, the condition z(¢) = 0 on I', the change of variable x = k(t)y and

the relations (10.23), (10.24) furnish the identity

, , W) ult)
o0 - ut oy - | Zu D0y -

Q

- / @ (6)B(t) — a(t)d (1)) d.

and by (10.22),

(10.27)

(10.28)
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The Green’s formula the integration by parts on [0,7] and the conditions z(t) = 0 on T,
u = g on X, yield

/ / Luwdydt — / / WL zdydt + N(T) = N(0) + J (10.29)

where N (t) denotes the left side of (10.28) and J, the left side of (10.27). Then from
(10.25)-(10.29) we have

jﬁ 7(0)0(0) — 20 (0))da+

T ~ (10.30)
2; -2 1 90
+// (65 — K"k 2y k" — v 0dDdt+
0J1, (%j
T —~ ~
+// (0" — Af)dxdt.
0 Jo
Motivated by (10.30), we introduce the following problem
0" — NG =hinQ,
§=0in3, (10.31)
9(0) = 8°, 7(0) = 6" in
with data
0 € H (), 6" € L*(Q), h € L'(0,T; L* (). (10.32)

We say that 6 is a weak solution of Problem (10.31) if
0 € C([0,T); Hy()), 0 € C(0,T]; L*())
and verifies
T T T
0 0 0

Va € L*(0,T; Hy (%)), @ € L*(0,T; L*()),
a(0) =a(T) =0, 6(0) =6, §(0) = 6"

Theorem 10.5 Let 0(xz,t) = k~"(t)z (%,t) . We have that if z is a weak solution of
(10.6) then 0 is a weak solution of Problem (10.31) and reciprocally. The data {50,@\1,71}
and {2°, z', h} are related by

T

P (z) = k(0)2° (W) (10.33)
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(10.34)

(see (10.23), (10.24)).

Theorem 10.5 is showed by relating integrals on {2; and €2 and using Theorem 10.2 and
(10.24).
The uniqueness of solutions of Problem (10.31) is a consequence of Theorem 10.5. We

also have that, since D0 _ p-n—10z

dz; dy; ’
9 00
aa_) aa* € L2(0,T: IX(T)),
oo R (10.35)
2 90

5, W, 1) = K () 5~ (k(1)y, 1).

Remark 10.6 Clearly we can change the data at time t = 0 by final data at t = T
in Problem (10.31) and obtain all the above results for the solution ) of the respective
backward problem. In the sequel we introduce the solutions defined by transposition. Let

us consider the problem

"~ AT=0inQ
U=7in 3, (10.36)
u(0) =", @'(0) =u" in Q
with data
1’ € L*(Q), u' € H'(Q), ©e L*0,T; L*(Ty)). (10.37)

Motivated by (10.30) one introduces the following definition: We say that u €
L>=(0,T; L?(€)) is a solution defined by transposition of Problem (10.36) if @ verifies

~

/ (@ B g2yt = (@4, B(0)) — (@, (0)) z2(cr)

/ / i — Kk )k —— o6 vy ddt,
ry Oz;

Vh € L0, T; LA()),

(v* defined in (10.21) where  is the weak solution of the problem

9" — NG ="hinQ,
f=0in EA],
8(0) =0, (0) =0 in Q.
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Theorem 10.6 Letu(z,t) =u <ﬁ, t) . We have that if u is a solution by transposition of
Problem (10.10) then u is a solution by transposition of Problem (10.36) and reciprocally.
The data {u°, @', v} and {u,u', g} are related by

X

(z) = u’ (W) (10.38)

RO K'(0) ou°
@0 = (-5

) =05 (15 )
B(a,t) = k" (t)g (% t) (10.40)

=

17B> , A€ Hy(Q),
(10.39)

The proof of Theorem 10.6 is obtained by the same argument used in the proof of (10.30).

For the initial conditions one uses the following result:

Remark 10.7 Let u® € L*(%) and u®(y) = u®(k(t)y). Then

<xgija> - <yig—§f,ﬁ> e HY(Q), alz) = k™(t)3 <%) .

To see this it is enough to make the respective integrations.
From Theorem 10.6 the uniqueness of solution of Problem (10.36) follows and by The-
orem 10.3,
u € C([0,T); L*(Q)) N CY([0,T]; H1(5)).

We observe that, in addition to (10.26), we have
T 00 , 00
2, n x
//Ft(fsij — K"k QZL’iJTj)k +1TVZ» Vay*drdt =

0z 0Oz
2
// ij yz j k’ (9 Vz—ayd[ dt.

10.5.2 Proof of Theorem 10.1.

Let us consider the system (10.3), that is,

' — Ati=01in Q,

o ) (10.41)
0 onX\X(y),

a(0) = @, @(0) = @' in Qg



143

where @ is constructed with T' > Ty, Tp) given (10.12). With (10.32)- (10.34) and (10.37)-

(10.39), we determine, respectively, the isomorphisms
G1{z°, 2"} = {6°,6'} and Go{u, u'} = {@°, @'}

Consider the operators

2k'(0)  ou°
0 1N 1 . _ .0
U{U ’u } - {U k(O) yl 8:1/7, ) u } 9

A0, 21} = {U'(O) — %g;)yiag—g(/?), —U<O)} )

where A is the isomorphism defined in (10.16), that is, z is the weak solution of the problem
L*z=01in Q,
z=0on X%, (10.42)
2(0) = 2% 2(0) =2'in Q

and u the solution defined by transposition of the problem

Lu=0in Q,
0z S0
u={ v OUEW) (10.43)

0 on T\
w(T)=0, '(T) =0 in Q.

Since A is an isomorphism we have that for each {u',u’} € H=1(Q) x L*(2) there exists

an unique {z%; 2'} € H}(Q) x L*(Q) such that

o 1y _ [ 1 2K(0) Ou 0
Az" 27} = {u — Wyla_yz7 —u } (10.44)

Thus, if u is the solution of problem (10.43) constructed with {2, 2!}, we have
u(0) = u?, ¥/ (0) =u'.
With the above operators we determine the isomorphism

A= GlA_laGgl, that is

A L2(Qo) X H_I(Qo) — H&(Qo) X L2(QQ)

~ 10.45
(@, a") = A0, @) = {00, 01) (1045)
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Let {@° @'} € L2(Q0) x H~'(Q). Thus, by (10.45), we determine {#°,#'}. With this

data we find the weak solution 0 of the problem

0"~ A=0inQ,
§=0in 3, (10.46)
0(0) = 6°, §'(0) = 61 in Q
and with {z°, 2!} = G7'{#°,6'}, the weak solution z of the problem
L*'z=01in Q,
z=0on X,
2(0) = 2%, 2/(0) = 2" in Q.
Next, we determine the solution defined by transposition u of the problem
Lu=0in Q,
0z ~
g S(2°
il o EW (10.47)

where {u°,u'} and {z°, z'} are related by (10.44). We have by the uniqueness of solutions
of problem (10.47) that & = u, u the solution of (10.43) constructed with {2°, 2*}. Therefore

Finally, from Theorem 10.6, it follows that u(z,t) = u (ﬁ, t) is the solution defined by

transposition of Problem (10.41) and u satisfies the final condition

By (10.35) and (10.36), we have that the control ¥ has the form

-~

9
U= %, 0 weak solution (10.46).
v

Thus, the proof of Theorem 10.1 is concluded.

Acknowledgement: We thank to Prof. E. Zuazua for his important remarks.
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