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Prefacio

As ultimas décadas presenciaram mudancas significativas tanto
na indudstria quanto na pesquisa associada as telecomunicacbes e ao
processamento de sinais. Tal dindmica concorre para a conhecida transi¢do
entre a Era Industrial e a que alguns autores prenunciam, apressadamente
ou nao, como a “Era da Informacdo”. Realizado entre os dias 29 de setembro
e 2 de outubro de 2019 na cidade de Petrépolis, Rio de Janeiro, o XXXVII
Simpdsio Brasileiro de Telecomunicacoes e Processamento de Sinais (SBrT
2019), com a apresentacdo de um pouco mais de duas centenas de artigos
rigorosamente selecionados (dentre mais de quatrocentos submetidos), é um
testemunho robusto deste incessante desenvolvimento tecnolégico.

Neste simpdsio, experientes pesquisadores ministraram sete minicursos,
devidamente aprovados por uma judiciosa selecdo, a qual priorizou tanto
a relevancia dos conteudos quanto a sua qualidade técnica. Este livro, ao
longo de seus seis capitulos, pretende disseminar parte do conhecimento tao
generosamente compartilhado nestes minicursos. Cada um dos capitulos
aprofunda e sistematiza o contetido da maioria dos minicursos respectivos.
Por 6bvio, as informacoes neles contidas sdo de completa responsabilidade
de seus autores.

O primeiro capitulo (intitulado “Fundamentos da Geoestatistica e
Kriging aplicados a Mapas de Ambiente de Rdadio”) se reveste de um
carater multidisciplinar, j4 quase ubiquo em desafios nas telecomunicacdes.
Conceitos de processos aleatdrios espaciais originalmente empregados em
geofisica, dentre os quais o preditor espacial “Kriging”, sdo mobilizados
para modelar o ambiente de rddio-propagacdo. Tal ferramenta prové uma
formulacdo analitica para a geracdo e a modelagem do que se tem chamado
de “mapas de ambiente de radio”, os quais tém atraido atenc¢do crescente na
area de sistemas de comunicacio sem fio.

O segundo capitulo também aborda um tema de grande aplicabilidade
em sistemas de comunicacdo sem fio: as antenas “phased array”. Neste
capitulo, os conceitos basicos de arranjos de antenas e da construcdo de
seus respectivos diagramas de irradiacdo sdo didaticamente descritos. As
principais janelas empregadas na reducgdo de efeitos adversos oriundos do
vazamento espectral sdo devidamente formuladas. Ademais, ferramentas
comumente adotadas quando tais janelamentos nao constituem uma
alternativa vidvel sdo também descritas. Métricas utilizadas para a
formacao de feixes adaptativos sdo motivadas e detalhadas, sendo ademais



comparadas as principais arquiteturas e geometrias de arranjos de antenas.
Generalizacoes dos modelos obtidos para sinais de banda larga sao
efetuadas, e importantes topicos na pratica - tais como erros, tolerancia,
calibracdo e alinhamento - sdo abordados de modo preciso e ndo menos
fundamentado. Por fim, algumas importantes aplicacdes biomédicas e
aeroespaciais sao elencadas.

Outro desafio importante na drea de comunicacdes sem fio reside na
pesquisa e desenvolvimento de tecnologias
para localizacdo e posicionamento de dispositivos. Tais tecnologias tém
sido consideradas chave e capazes de apresentar repercussoes importantes
seja no desenvolvimento, seja no aprimoramento das chamadas “cidades
inteligentes” e da “internet das coisas”. Assim, o terceiro capitulo deste
livro, intitulado “Aprendizado de Madquina Aplicado a Localizacdo de
Usudrios em Redes sem Fio: Oportunidades e Desafios”, descreve os
principais parametros de sinal adotados em redes sem fio para propésitos de
localizagdo, bem como as principais categorias dos sistemas de localizacao.
As técnicas bdsicas empregadas para localizacdo - a saber, lateracdo e
fingerprinting (correlacdo de assinaturas) - sdo elencadas e ferramentas de
inteligéncia artificial - tais como vizinhos mais préoximos e mdquinas de vetor
suporte - sdo adotadas para modelar as dindmicas nao lineares inerentes aos
parametros dos sinais de radio-frequéncia, bem como para contornar o fato
de que a quantidade disponivel de medicdes dos parametros costuma ser
deveras limitada, na pratica.

O quarto capitulo - intitulado “Fundamentals and Techniques for
the Localization of a Sensor and the Mapping of an Environment Using
Videos” - trata de técnicas que efetuam simultaneamente a localizacdo e o
mapeamento (SLAM, do inglés simultaneous localization and mapping) de
um ambiente por meio de sensores visuais. O formalismo da algebra de Lie
e da geometria projetiva sdo empregados para resolver desafios inerentes a
localizagcdo e o mapeamento por meio de sensores visuais monoculares. A
resolucéo de tais desafios é essencial para as mais diversas aplicacoes, dentre
as quais destacam-se a direcdo autonoma, a realidade virtual e diversas
aplicacoes da robdtica.

Tanto a andlise de varidveis latentes quanto o problema da separacgado
de sinais sdo contemplados no quinto capitulo (“Separacdo de Sinais
e Andlise de Varidveis Latentes: Fundamentos e Tendéncias”), o qual
delineia a evolucdo do estado da arte nestes campos. As vantagens da
adocdo de estatisticas de ordem superior, a aplicabilidade da andlise de
componentes principais, a importancia da andlise de componentes esparsos
e a flexibilidade das técnicas de fatoracdo de matrizes ndo negativas sao



tépicos devidamente enfatizados e discutidos. Como resultado, tem-se
um proveitoso panorama desta drea da qual, a despeito de ja poder ser
considerada madura, nao seria de todo imprudente esperar numerosas
inovacoes nos préoximos anos.

O sexto e ultimo capitulo, intitulado “Manual de Construcdo e
Montagem do Cansat”, contempla a construcdo de pequenos satélites, mais
especificamente do tipo Cansat. Importa notar que relevantes aspectos
praticos da construcio desses satélites sdo discutidos. A relevancia deste
tépico para a academia é significativa, dado que as dimensdes reduzidas
destes satélites promovem sua facilidade de uso e de lancamento. Assim,
permite-se que universidades e instituicOes cientificas, tradicionalmente
alijadas dos dispendiosos recursos necessdrios ao desenvolvimento de
satélites convencionais, possam efetuar contribuicoes tecnoldgicas no tema.

Por fim, agradecemos aos proponentes dos minicursos a submissdo de
material de grande qualidade técnica e o grande denodo demonstrado no
cumprimento de prazos restritos. Gostariamos ademais de manifestar nosso
desejo de que as repercussoes positivas deste empreendimento na pesquisa,
na inovacao e no desenvolvimento do pais sejam ao menos proporcionais ao
investimento demandado pela escrita e pela edicao deste livro. Satisfeita tal
aspiracdo, descabe exigir mais.

Diego Barreto Haddad

Coordenacdo de Minicursos
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CAPITULO

1

Fundamentos da Geoestatistica e
Kriging aplicados a Mapas de
Ambiente de Radio

Ricardo Augusto (Instituto Nacional de Telecomunicagdes, Inatel)

1.1 Introducao

O uso dos mapas de ambiente de rddio (REM - Radio Environment Map) tem
despertado o interesse cientifico na area de sistemas de comunicag¢bes sem fio [1-3],[6-10].
Parte disto ocorre em razdo da forma como o REM utiliza as informacgdes de geolocalizacao
e 0s potenciais beneficios desse mapa para os sistemas de comunicagdes sem fio,
especialmente para os processos de planejamento e otimizacdo de cobertura, importantes na
area de comunica¢oes moveis [ 7-8]. De fato, o impacto do conhecimento sobre informacoes
geolocalizadas associadas aos sinais de radio experimenta um crescimento significativo,
atingindo diferentes campos das dreas das comunicacgoes e navegacao (e.g., futuras geragoes
de redes moveis, transportes inteligentes e redes de sensores) [4-5].

Neste contexto, as pesquisas cientificas sobre a geracdo e a utilizacdo dos mapas sdo
essenciais para que o REM possa ser efetivamente inserido nas aplicacdes de comunicagdes
sem fio. Este trabalho tem enfoque no aspecto de geracdo do REM, caracterizado como
um problema de predicédo espacial sobre o ambiente de radio. Especificamente, o objetivo
deste trabalho consiste em apresentar um método de geracdo baseado em ferramentas da
geoestatistica, que permitem explorar a covaridncia espacial entre as medidas do ambiente
de radio, para que o REM seja obtido com maior acurdcia.

Inicialmente, os conceitos da geoestatistica sdo introduzidos por meio dos processos
aleatdrios espaciais. Em seguida, os detalhes do modelo de predicdo espacial para a
geracdo do REM sao apresentados, bem como as técnicas de estimac¢do que caracterizam
a etapa de treinamento do modelo. O preditor espacial Kriging, conhecido da area
geoestatistica, é colocado e sua formulacdo analitica é desenvolvida. Finalmente,

simulacOes computacionais permitem verificar o resultados da geracdo do REM.
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1.2 Processos Aleatorios Espaciais

O estudo sobre os processos aleatdrios espaciais € baseado na escolha de modelos que
buscam a representacdo adequada dos fendmenos espaciais em andlise. Especificamente,
estas representacdes envolvem descricdes matemadticas, estatisticas e visuais dos processos
aleatdrios espaciais. Com isso, o principal propdsito da geoestatistica' consiste em prover
uma descricdo estatistica sobre a variabilidade espacial dos fendomenos, para que seja
possivel investiga-los por meio de modelos geoestatisticos.

Um modelo geoestatistico amplamente utilizado para descrever os processos
aleatdrios espaciais é formado por duas componentes definidas em todas as coordenadas
espaciais s = (s,,s, ), i.e.,

P(s) = u(s) + &(s), coms € D, (1.1)

em que u(s) consiste na média do processo aleatdrio espacial e £(s), que representa as
variacOes aleatdrias do processo P(s) sobre a média u(s) ao longo do dominio espacial D,
definido neste trabalho como um espaco bidimensional para caracterizar o ambiente de
rddio das comunicacdes sem fio (i.e., D € R?). Sob o ponto de vista estatistico, o processo
P(s) é composto por um conjunto infinito de variaveis aleatérias P(s;), cujas realizacoes
sdo governadas por mecanismos aleatdrios, caracterizados de foma probabilistica pela

distribuicdo i-dimensional Fp,
Fp = Prob[P(s;) < p(s1), ..., P(s;) < p(s;)], (1.2)

em que P(s;) e p(s;) consistem na variavel aleatéria (VA) espacial e sua realizacdo na
coordenada s;, respectivamente. A Figura 1.1 ilustra a realiza¢do de um processo aleatério
espacial Gaussiano, ou seja, as variaveis aleatdrias espaciais que compdem este processo
aleatério seguem a distribuicdo de probabilidade Gaussiana, resultando nas flutuagdes
aleatorias mostradas ao longo do espaco. Assim, P(s) é dito Gaussiano se a distribuicao
conjunta de {P(s;),..., P(s;)} para qualquer conjunto de coordenadas espaciais {s,...,S;} €
do tipo Gaussiana multivariada [11-16].

Os processos Gaussianos multivariados sdo especificados com as funcoes média u(s) e
covaridncia C(s;, s;). A especificacdo destas fungdes e a estimacio de seus parametros fazem
parte da modelagem matematica dos fendmenos analisados pela geoestatistica. A média de
um processo aleatorio espacial u(s) = E{P(s)} consiste no valor esperado de P(s) em uma
posicdo espacial s;, i.e., u(s;) = E{P(s;)}. Com isso, dependendo das caracteristicas de
P(s), é possivel que u(s) assuma diferentes valores ao longo das coordenadas espaciais s no
dominio D. Nesta circunstancia, o processo aleatdrio espacial P(s) exibe uma caracteristica
sistemdtica, denotada como tendéncia espacial, retratada pela variacdo do valor esperado

do processo aleatdrio ao longo do espago [11-16].

1A geoestatistica teve seu inicio na década de 1950 com D. Krige, G. Matheron, B. Matérn, A. N.
Kolmogorov, além de outros pesquisadores que atuavam em diferentes areas destacando as ciéncias da Terra
e do clima, além da industria de mineracéo, 6leo e gas [11],[12],[14-16].
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Figura 1.1 — Realizacdo de um processo aleatodrio espacial Gaussiano.

Na andlise dos processos aleatdrios espaciais visando a realizacdo de predicoes, a
identificacdo da tendéncia u(s) é um passo importante e, na maioria dos casos, requer
algum tipo de tratamento estatistico. Em geral, este tratamento pode ser feito de duas
formas: i) incorporando a modelagem selecionada para a tendéncia ao funcionamento do
preditor espacial e ii) fazendo a estimacao seguida da remocado da tendéncia dos dados para
o posterior processamento e andlise. No exemplo da Figura 1.1, o processo P(s) ndo exibe
tendéncia, pois foi gerado com média nula, i.e., u(s) = E{P(s)} = 0. Ainda assim, é possivel
visualizar as variacdes espaciais ocorrendo na forma de aglomerados?.

As propriedades estatisticas das VAs espaciais que compdem P(s) determinam
a relacdo de dependéncia entre tais varidveis aleatérias. Esta relacdo consiste na

caracterizacdo estatistica espacial de P(s), que é descrita por sua covariancia espacial,

C(s;, Sj) = COV(P(Si),P(Sj)) =E{[P(s;) _M(Si)][P(Sj —M(Sj)]}- (1.3)

O modelo selecionado para (1.3) caracteriza as flutuagdes espacias aleatorias de &(s),
expressando a similaridade entre as VAs. Verifica-se que (1.3) requer o conhecimento da
média do processo P(s) nas coordenadas espaciais s; e s;. De outro modo, a ideia de
dissimilaridade espacial entre as VAs é descrita pela funcdo semivariograma, amplamente
difundida na drea geoestatistica e definida como a metade da varidncia das diferencas entre

as VAs que compoem P(s),

1(55)) = SVar(P(s) —P(s)
1 (1.4)
= 2 B{P(s) — P(s,)~ B{P(s)—P(s )} '}

20s aglomerados espaciais consistem em regides nas quais os valores do processo aleatdrio sdo similares
e sua identificacdo sugere (mas nio permite inferir) a presenca de correlacdo espacial no processo aleatério.
Assim, de acordo os valores de realizacao assumidos pelas VAs, os aglomerados podem ser de alta intensidade
(chamados de hotspots) ou de baixa intensidade (conhecidos como coldspots).
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Na literatura geoestatistica, denota-se 2y(s;,s;) como variograma e y(s;,s;) como
semivariograma, sendo que ambas as funcdes transmitem a ideia de dissimilaridade.
A covariincia e o semivariograma de um processo aleatdrio espacial P(s) sdo ditos
estruturados se os valores ndo nulos de C(s;, s;) e y(s;, s;) apresentarem um comportamento
interpretdvel e que possa ser descrito por modelos analiticos de covaridncia e
semivariograma. Assim, a caracterizagao estatistica espacial de P(s) é descrita por modelos
de covaridncia e semivariograma, envolvendo a relacdo entre u(s) e £(s), enquanto a
utilizacdo destas fun¢des permite que predicOes espaciais e inferéncias possam ser realizadas
sobre o processo P(s). Deste modo, a selecdo de modelos apropriados para (1.3) e (1.4) é
um topico importante, pois permitira alcancar melhores resultados de predicoes espaciais
ndo somente no sentido tradicional, i.e., predicoes enviesadas ou ndo enviesadas, mas em
termos de acurdcia, i.e., com erros de predicdo espacial menores. Isto é possivel porque a
concepcao dos preditores geoestatisticos é baseada em métodos que exploram a covariancia
e a semivariancia espacial do processo aleatério a favor das predigdes espaciais.

Neste contexto, o formato de C(s;,s;) e y(s;,s;) é um aspecto relevante e depende
da distdncia entre as observagbes de P(s) por meio de h = (h,,h,), definido como
um vetor bidimensional de separacdo espacial entre as coordenadas s, i.e., h = s, —s;.
Em outras palavras, a forma como estas fungdes se comportam em funcdo de h indica
que observagbes do processo P(s) que estdo relativamente préximas apresentam alta
similaridade, enquanto observacoes distantes sdo ditas espacialmente descorrelacionadas
(apresentam baixa similaridade ou alta dissimilaridade espacial). Outro ponto importante
considerado na geoestatistica consiste nas pressuposicoes de estacionariedade sobre o
processo aleatério P(s), sobretudo a estacionaridade no sentido amplo [11-16]. Neste caso,
as funcoes (1.3) e (1.4) sdo invariantes a translacdo espacial (isotropia), isto é, a covariancia
e as semivariancias entre quaisquer coordenadas espaciais de um processo P(s) estacionario
(no sentido amplo) ndo dependerdo das posi¢cdes espaciais especificas, mas do vetor de

separac¢ao entre as coordenadas h,

C(s;,s; + h) = E{[P(s;) — u][P(s; + h) —u]} = C(h)
r(si,s;+h) = % E{[P(s; + h) —P(s;) — E{P(s; + h) — P(s,)} ]’} (1.5)

_ %E{[P(si +h)—P(s)]*} = y(h)

Este conceito sobre a covariacdo dos atributos das VAs espaciais na modelagem de
P(s) constitui a ideia central da geoestatistica para que o uso das funcbes covaridncia e
semivariograma possibilite a geracdo de predicdes espaciais com melhor acurdcia. Em
sistemas de comunicacoes sem fio, as funcdes em (1.5) sdo estimadas a partir de um
conjunto de medidas capturado, para que as estatisticas calculadas possam quantificar a
covariancia e o semivariograma do ambiente de radio.
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1.3 Modelagem do Ambiente de Radio

O modelo de sistema utilizado neste trabalho é caracterizado pelo ambiente de radio
de um sistema de comunicacao sem fio composto por varios dispositivos e uma estacao radio
base (ERB). Algumas pressuposicOes iniciais sdo colocadas: i) primeiramente, assume-se
que os dispositivos estdo distribuidos de acordo com a densidade de probabilidade uniforme
na area de cobertura da ERB e que suas posicoes, descritas pelas coordenadas espaciais s,
sdo conhecidas a priori. Além disso, assume-se que tais dispositivos sdo capazes de realizar
as medidas de intensidade do sinal recebido, i.e., poténcia de recepcio, e envia-las para a
ERB, que coordena a operacdo do sistema de comunicacdo sem fio. Isso significa que a ERB
é responsavel pelo processamento das medidas coletadas e pela geracdo do REM.

E importante mencionar que, na pratica, as coordenadas s sio estimadas com métodos
de localizacdo utilizados no sistema de comunicagdo sem fio. Os niveis de poténcia de
recepc¢do nos dispositivos sdo influenciados diretamente pelos mecanismos de propagacgado
do ambiente de rddio como as difracdes, reflexdes, refracées, bem como a perda por percurso
média e, consequentemente, podem afetar a geracdo das predicoes espaciais do REM.

Neste trabalho, o ambiente de radio consiste em um processo aleatdrio espacial P(s)
definido em todas as coordenadas espaciais s = (s,,s,), formado a partir da tendéncia
u(s), representada pela perda por percurso média do ambiente de radio, e das flutuacoes
aleatdrias espaciais £(s), representadas pelo o sombreamento do canal sem fio ao longo da
regido de cobertura D atendida pela ERB. Especificamente, o modelo log-distancia [17-18]
¢ utilizado para descrever a perda por percurso média da tendéncia espacial u(s) no espago

bidimensional e pode ser expresso de acordo com,

.U’(S) = Ptx —10a log (d(StXJ S))

(1.6)
= Ptx - 10alog \/(Sxtx _Sx)z + (Sytx _Sy)Z)

em que P, é a poténcia de transmissdo utilizada no transmissor da ERB e a consiste no
coeficiente de propagacdo do modelo de perda por percurso. Nota-se que o modelo em (1.6)
depende da distancia entre a ERB, com localizacio assumida fixa em s, = (Syx,Syx), € 08
dispositivos da rede que estéo associados as coordenadas espaciais s = (s,,s, ), previamente
conhecidas pela ERB por meio dos métodos de localizacao.

A escolha do modelo log-distancia € feita em funcdo de duas razdes: i) primeiramente
devido ao seu uso consolidado e difundido na literatura cientifica e ii) pela possibilidade
de formulacdo linear do problema de estimacdo da tendéncia espacial, discutida adiante.
Sobre este tultimo aspecto, é importante observar que o modelo log-distancia é linear no
parametro a e embora linear em a, o modelo ndo é linear nas coordenadas espaciais s,
pois envolve as funcoes logaritmo e raiz quadrada em razao das distancias a serem obtidas
em duas dimensoes. Estas caracteristicas irdo influenciar as etapas de aprendizagem de
parametros, cujos valores sdo desconhecidos e constantes, e das predicdes espaciais, cujos

valores sdo desconhecidos e randémicos em func¢édo do processo aleatdrio P(s).
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O modelo (1.1) indica que as flutuacoes espaciais aleatérias do sombreamento &(s)
ocorrem em torno da poténcia média de recepcao u(s). Em um sistema de comunicacdo
sem fio, isso ocorre devido as caracteristicas do ambiente de propagacdo, como construcoes
e obstaculos que estdo relativamente préximos aos dispositivos. Especificamente, os sinais
transmitidos por um canal sem fio experimentam variacOes aleatdrias em suas intensidades
e, uma vez que diversos aspectos dos obstdculos sdo desconhecidos (e.g., localizacéo,
tamanho, propriedades dielétricas), o uso de modelos estatisticos é essencial para descrever
as variacoOes aleatdrias da poténcia de recepcdo nos dispositivos.

Neste contexto, dois fatores de importéancia sdo considerados: i) a distribuicdo de
probabilidade das variacOes aleatérias da poténcia de recepcdo provocadas pelos efeitos do
sombreamento e ii) a covariancia existente entre os valores de poténcia de recepcdo ao longo
do espaco. Sobre o fator i), a distribui¢do log-normal é uma das mais utilizadas na literatura
para a modelagem dos efeitos do sombreamento do canal sem fio [17-18]. Considerando
a escala logaritmica para os niveis de poténcia de recepcdo (dBm), este modelo consiste
em um processo aleatério Gaussiano, capaz de capturar as variacdes aleatérias (dB) do
sombreamento do canal sem fio de forma satisfatéria [17-18]. Com isso, o modelo de

sistema em (1.6) relacionado com o ambiente de radio pode ser expandido de acordo com,

P(s) = u(s) +&(s)
=Py — 10a10gd(stx,s) + &) , (1.7)
N N

Perda por Percurso Média Sombreamento

em que £(s) é um processo aleatério Gaussiano com média nula e covariancia espacial
C(s;,s;). Sobre o fator ii) o modelo de Gudmundson® é amplamente utilizado na literatura
para descrever a correlacdo espacial do sombreamento, a partir das distancias de separagdo
h entre as medidas no ambiente de radio [19]. Com isso, o decaimento exponencial que
caracteriza a correlacdo do modelo de Gudmunson é adotado para as funcdes covariancia e

semivariograma, que podem ser expressas de acordo com

C(h)=mexp(—%), y(h)=m {l—exp(—g)}, (1.8)

em que o parAmetro m representa a variancia o> do sombreamento (Gaussiano) e quantifica
a dispersdo das variacOes aleatdrias £(s), enquanto o parametro r, indica o range dos
modelos (1.8) e representa a distancia de descorrelacdo espacial d,, do sombreamento log-
normal. Logo, verifica-se que o processo P(s) é Gaussiano e espacialmente correlacionado,
com média que depende das caracteristicas da tendéncia u(s) e covariancia espacial C(s;, s;),

que depende das caracteristicas do sombreamento log-normal £(s).

30 modelo de Gudmundson indica que a correlacdo espacial do sombreamento decresce exponencialmente
em func¢do do aumento da distdncia h entre as medidas [17-19]. De fato, varios estudos baseados em
campanhas conduzidas em ambientes de propagacgdo constatam a validade do modelo de Gudmundson
[17-19], enquanto diversos artigos cientificos propdem métodos de geracdo do sombreamento log-normal,
considerando este modelo [20].
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1.4 Modelo de Predicao Espacial para a Geracao do REM

A modelagem do ambiente de rddio permite que o processo aleatdrio espacial P(s)
seja gerado com simulacdes computacionais por meio da combinacdo entre a poténcia de
recepcdo média u(s), obtida a partir da perda por percurso média, e o sombreamento log-
normal £(s) modelado através de processos Gaussianos. Diferentes técnicas podem ser
utilizadas para a geracdo do sombreamento log-normal do canal sem fio: soma de sendides;
decomposicdo de Cholesky, filtragem autoregressiva de primeira ordem e transformacgoes
de Fourier dos modelos de correlacdo do sombreamento [20]. Neste trabalho, o método de
Cholesky é escolhido, uma vez que esse é baseado na decomposicdo da funcao covaridncia
do processo P(s), que possui relagdo direta com o semivariograma, principal ferramenta da
geoestatistica utilizada para a geracao das predi¢des espaciais.

A Figura 1.2 mostra a realizacdo de um processo aleatdrio espacial Gaussiano, gerado
com média nula e covariancia espacial do tipo exponencial. Um conjunto de coordenadas
espaciais s, gerado aleatoriamente a partir da densidade de probabilidade uniforme, é usado
para a amostragem espacial do processo P(s). O resultado consiste em um conjunto finito
de medidas de poténcia de recepcio {P(s;), i = 1,...N}, em que N consiste no niumero
total de medidas coletadas. Na geoestatistica, o conjunto dos valores realizados das VAs do
processo P(s) é denominado varidvel regionalizada (VR). Na pratica, isso significa que o
conjunto de medidas capturado é somente uma parte observavel da VR do processo P(s).
Por simplicidade, tal conjunto também é denotado como VR neste trabalho, ou seja, os
valores regionalizados formam as N medidas que os métodos geoestatisticos possuem para
que a estimagdes das funcdes covaridncia e semivariograma possam ser realizadas, visando

as posteriores predicoes espaciais.
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Figura 1.2 — Amostragem espacial sobre a realizagdo de um processo aleatdrio Gaussiano.

O modelo de predicdo espacial mostrado na Figura 1.3 é utilizado para a geragdo do
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Figura 1.3 — Modelo de predicdo espacial para a geragdo do REM.

REM a partir das medidas coletadas com a amostragem espacial. O modelo se fundamenta
na abordagem geoestatistica e contempla a Fase I, caracterizada pela aprendizagem
dos parametros do ambiente de rddio com trés etapas de estimacdo: i) o tratamento
da tendéncia; ii) a estimacdo do semivariograma experimental e iii) a estimacdo dos
parametros de covariancia do sombreamento log-normal. O éxito na aprendizagem dos
parametros € essencial para que as predi¢Oes possam ser realizadas na Fase II com a técnica
Kriging e o REM seja gerado. Logo, o objetivo do modelo de predicdo consiste em usar
métodos geoestatisticos que permitem obter o REM com maior acurdcia.

Sobre o funcionamento do modelo, simulacdes computacionais baseadas na
modelagem do ambiente de radio (tendéncia e processos Gaussianos) sdo utilizadas para
geracao o processo aleatorio P(s). Em seguida, ambas as fases (I e II) contam com o conjunto
finito de N medicoes realizadas pelos dispositivos da rede com a amostragem espacial,

permitindo a formulacdo matricial do modelo de sistema, de acordo com
p=xa+§, (1.9)

em que p = [P(s;), ...,P(sy)]" é o vetor com as medidas de poténcia de recepcio coletadas,
a e x = [—10logd(sy,S;),...,—10logd(s,,sy)]" consistem no parAmetro e no vetor de
fun¢des do modelo log-distancia com P, = 0dBm, e § = [&(s;), ..., £(sy)] é o vetor aleatdrio
Gaussiano de média nula, desvio padrao o e matriz de covariancia C (com dimensoes N xN)
do sombreamento log-normal do canal sem fio.

A primeira etapa da fase de aprendizagem de pardmetros consiste no tratamento da
tendéncia e sua realizacdo é importante por duas razdes: i) a presenca da tendéncia implica
em flutuagdes da poténcia de recepcdo média, afetando a estacionaridade do processo
P(s); ii) a aplicacdo de técnicas de estimacdo (e.g., semivariograma experimental), se
realizada diretamente sobre as medidas coletadas (com a presenca da tendéncia), pode
levar a resultados de predicdo enviesados [12]. Deste modo, os processos de estimacgao e
remocao da tendéncia se tornam necessarios no caso especifico do ambiente de raddio. Na
situacdo em que o modelo da tendéncia é linear nos pardmetros, como no caso do modelo
log-distancia, é possivel encontrar o estimador ndo enviesado de minima variancia (MVUE

- Minimum Variance Unbiased Estimator [21, pp. 85-86]) para o coeficiente a, i.e.,

&= (x"x)"'x"p. (1.10)
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E importante ressaltar que os valores de poténcia de recepcio do vetor p sio formados
por uma parcela média, u = xa, e contaminados pelas variacoes aleatdrias & e, nesse
sentido, o tratamento da tendéncia € realizado para que os valores regionalizados de
interesse (sem a tendéncia) sejam obtidos, ou seja, a VR desejada representa as variagoes
aleatdrias relacionadas com o sombreamento do canal sem fio §. Especificamente, a
estimativa do coeficiente de propagacdo @ com (1.10) é utilizada no modelo (1.6) a fim
de obter as estimativas da poténcia de recepcao média em diferentes coordenadas espaciais
s, denotadas como [x. Com isso, a remoc¢do da tendéncia do vetor de medidas p permite
que predicoes das variacoes do sombreamento & possam ser realizadas com métodos
geoestatisticos e incorporadas na geracdo do REM, visando maior acurdcia nos resultados

de predicdo espacial. Analiticamente, este processo de remocao da tendéncia é dado por
z=p— (1.11)

em que p = [P(s;), ...,P(sy)]" é o vetor com os valores de poténcia de recepcio coletados
do ambiente de radio, & = [{i(s;),...,[(sy)]" é o vetor com as estimativas de poténcia
de recepciio média obtido a partir de & e z = [Z(s,),...,Z(sy)]", que consiste no vetor
com os valores regionalizados, apés a remocdo da tendéncia. Em sintese, este processo
é conhecido como detrending e possui dois objetivos: i) remover o viés tendencioso das
medicdes de poténcia de recepcdo para que as variacoes do sombreamento log-normal
possam ser estimadas pelas proximas etapas do modelo de predicdo espacial e ii) permitir
que a componente média da poténcia de recep¢do possa ser obtida em diversas localidades
do dominio espacial D para a gera¢cdo do REM.

Na sequéncia do modelo de predicdo espacial, tem-se as etapas de estimacdo
do semivariograma e covariograma experimentais, além dos parametros de covariancia,
por meio do ajuste de seus respectivos modelos analiticos. O semivariograma e o
covariograma experimentais consistem nas estimativas empiricas das funcOes tedricas
semivariograma e covariancia do processo aleatdrio espacial, fundamentais para a geragao
das predicOes espaciais. Matematicamente, a estimacdo do semivariograma experimental
7(h) é obtida com o valor médio das diferencas quadrdticas entre os valores regionalizados
z, considerando diferentes separacdes espaciais h. O método dos momentos de Matheron
(MoM) é o principal estimador utilizado para obter o semivariograma experimental,

expresso de acordo com [11-16],

. 1 .
p)==— > [Z(s)—Z(s) Vs,s;€D,i,j=1,2,..N, (1.12)
2N,
s;—s;j=h
em que N, representa o numero de pares de medidas que se distanciam de h tomadas no
conjunto de valores regionalizados. O nimero total de medidas N e, consequentemente, o
numero de pares de medidas N, sdo fatores que tém influencia nos resultados do estimador
(1.12). De fato, para que as estimativas y(h) tenham confiabilidade estatistica, é necessario

que N, seja suficientemente grande, exigindo que N também seja elevado.
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Sobre esse aspecto de estimacdo do semivariograma experimental, o fato de o vetor
Z ser composto por um conjunto finito de N medicdes impde desafios ao estimador (1.12).
Frente a essa situacdo pratica, algum tipo de agrupamento é realizado sobre as distancias
e semivaridncias obtidas, para que os resultados de estimacdo tenham maior confianca
estatistica. Ainda assim, variacGes nos valores das estimativas y(h) sdo comuns e podem
ocorrer, uma vez que a média estimada via MoM ¢é baseada na quantidade N;,, que depende
da forma como agrupamento € aplicado ao conjunto total de N medidas.

A Figura 1.4 mostra as duas principais formas de estimacdo do semivariograma
experimental: (a) a nuvem do semivariograma, que € constituida diretamente a partir
dos valores das diferencas quadraticas entre todas as N medidas do vetor z e (b) o
semivariograma experimental obtido com o agrupamento das distdncias com o estimador do
MoM. E importante mencionar que cada ponto da nuvem de semivariéncias esta relacionado
com um par de observagoes espaciais, ou seja, nenhum tipo de agrupamento de distancias
é aplicado. Este formato em (a) é uma ferramenta util na exploracdo da variabilidade do
processo aleatdrio, pois permite verificar a presenca de outliers no sentido de inspecionar
semivariancias muito elevadas em medicdes que estdo espacialmente préximas.

De outro modo, nota-se que o agrupamento das distdncias em (b) suavizou o
semivariograma experimental. De forma especifica, o agrupamento é obtido com um
processo de quantizacdo aplicado a todas as distdncias h calculadas entre as medidas
do vetor z, resultando em um novo conjunto de distincias denominadas lags [9], [15-
16]. Assim, todas as medidas cujas distancias de separacdo foram quantizadas para uma
determinada distincia lag sdo incluidas no computo da respectiva semivariancia. E possivel
verificar a quantidade de medidas usadas em cada agrupamento, mostradas nas caixas
numéricas em (b). Nota-se que algumas semivaridncias foram computadas com mais
medidas do que outras. Isso significa que cada estimativa y(h) é obtida com uma precisao
diferente. Portanto, a forma como a quantizacdo é aplicada juntamente com o MoM é um

ponto de relevancia na implementacao pratica do estimador (1.12).
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Figura 1.4 — Semivariograma experimental: (a) nuvem de semivaridncias (b) com agrupamento de
medidas.
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O estimador baseado no MoM também ¢é utilizado na estimacdo da covariancia do

processo aleatorio espacial, caracterizando o covariograma experimental C(h), dado por

C(h) = % [Z(s;) —a(s)1Z(s;) —ads;)], Vs;,s;€D,1,j=1,2,..N. (1.13)
h si—s;=h

em que f{i(s;) e ((s;) consistem na estimativas dos valores esperados nas coordenadas
espaciais s; e ;. As covariancias e semivariancias experimentais obtidas com os estimadores
(1.12) e (1.13) sdo o ponto de partida para que os modelos de covariancia C(h,0) e do
semivariograma y(h, 8) possam ser ajustados por meio da estimacdo de seus parametros 6.

A Figura 1.5 mostra as diferencas entre as partes experimentais e seus respectivos
modelos para a covariancia (a) e para o semivariograma (b). O modelo selecionado deve
ser representativo no sentido de capturar o comportamento das estimativas 7(h) e C(h)
em funcdo das distancias lags. A principal caracteristica destes modelos é a presenca do
vetor de parametros @ = [m r] e o processo de aprendizagem ou treinamento do modelo de
predicdo consiste do ajuste dos modelos analiticos em relacdo as estimativas experimentais,
permitindo a obtencdo do vetor . Algoritmos de otimizagdo sdo aplicados para que o
ajuste dos modelos em relacdo aos dados experimentais seja alcancado de forma eficiente.
Nota-se que, enquanto as estimativas experimentais sdo baseadas no conjunto finito de
distancias lags, a estimacdo de 0 permite que os modelos analiticos fornecam valores
de semivariancias e covariancias para qualquer distdncia de separacdo espacial h. Essa
caracteristica é fundamental para o funcionamento do preditor Kriging (discutido adiante).
Portanto, o ajuste dos modelos exponenciais de covaridncia e semivariograma em (1.8)
as estimativas experimentais em conjunto com as distancias lags permitird a estimacdo do
vetor de parametros 8 do sombreamento log-normal do canal sem fio. Neste trabalho, esse
processo é realizado com a técnica dos minimos quadrados (LS - Least Squares) e caracteriza

a finalizacdo da etapa de treinamento do modelo de predicédo espacial.
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Figura 1.5 — Modelos analiticos e partes experimentais: (a) covaridncia e (b) semivariograma.
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1.4.1 Simulacdo da Fase I de Aprendizagem do Ambiente de Radio

Esta secdo apresenta os resultados de simulacdo da Fase I de aprendizagem de parametros
do ambiente de rddio, destacando a estimacdo da tendéncia, do semivariograma e do
covariograma experimentais, bem como do vetor de parametros 6 por meio da técnica LS.
O ambiente de rddio é caracterizado pelas transmissoes de uma ERB que possui localiza¢do
fixa em s, = (100,100), poténcia de transmissao igual a O dBm e que, com uma antena
ominidirecional, atende uma area de cobertura com dimensao espacial de 300 m x 300 m.

A Tabela 1.1 mostra os parametros do ambiente de rddio e as configuracdes utilizadas
na simulac¢do. Os valores escolhidos para as configuragdes buscam representar os cendrios
de comunicacoes sem fio, especialmente os ambientes de comunica¢des sem fio externos
(principal alvo deste trabalho). As configuracoes mostradas retratam um cendrio de
propagacdo urbano tipicamente caracterizado pelas faixas 3 < a < 5, para o coeficiente
de propagacdo, e 5dB < o < 13dB, para o desvio padrdo do sombreamento log-normal
[18]. Na literatura, varios trabalhos conduzem campanhas de medidas com o objetivo de
caracterizar a distancia de descorrelacéo espacial (d,,,) do sombreamento, de acordo com
o tipo de ambiente de propagacdo, e.g., 10 m para microcélulas urbanas, 50 m a 120 m para
ambientes urbanos e 50 m a 400 m para ambientes suburbanos [22]. Nesta simulagio, foram
coletadas N = 200 medidas do ambiente de radio, considerando a auséncia da incerteza de
localizacéo, i.e., as coordenadas espaciais s sdo estimadas de forma perfeita pelos métodos
de localizacdo. Além disso, é assumido que ndo ocorrem variacdes do processo aleatdrio
em pequena escala, uma vez que existe o interesse somente nos efeitos em larga escala do
canal de comunicac¢édo sem fio. A razdo para isto é que os efeitos de pequena escala (e.g.,
multiplos percursos) apresentam varia¢des significativas em distancias muito pequenas
(poucos metros ou até centimetros dependendo da frequéncia de operacdo), dificultando
significativamente a predicdo espacial baseada nas informacoes de localizacao.

Os resultados de simulacdo podem ser observados na Figura 1.6, onde o ambiente de
radio é composto por (a) mapa da poténcia de recepcdo média devido a perda por percurso
e por (b) mapa do sombreamento log-normal do canal sem fio com covariancia exponencial
e isotropica. A combinac¢édo dos mapas (a) e (b) resulta no processo aleatério espacial P(s),
que caracteriza o ambiente de radio, mostrado em (c). Observa-se que o sombreamento

log-normal influencia diretamente os valores de poténcia de recepcao.

Tabela 1.1 — Parametros e Configuragdes da Simulagéo

Parametros do Ambiente de Radio Configuracoes
Modelo de Perda por Percurso Log-Distancia (a = 4)
Sombreamento Log-normal (Gaussiano)
Desvio Padrdo do Sombreamento o =5dB
Distancia de descorrelacdo do Sombreamento deorr =50 m
Amostragem Espacial Uniforme
Numero de Medidas Coletadas N =200

Parametros da Covariancia Espacial 0 =[m r]=[2550]
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Figura 1.6 — Resultados de simulacéo: (a) poténcia média de recepcéo; (b) sombreamento do canal sem
fio; (c) ambiente de rddio com amostragem espacial realizada a partir da densidade de probabilidade
uniforme; (d) estimagéo da perda por percurso média; (e) semivariograma e (f) covariograma.

Os pontos da amostragem espacial sdo gerados na drea de cobertura da ERB, a partir
da densidade de probabilidade uniforme, resultando no conjunto de poténcias de recepcao,
{P(s7), ..., P(8500)}. Dentro deste contexto, é importante mencionar que a densidade de
probabilidade utilizada na modelagem da amostragem espacial depende de caracteristicas
especificas das aplicacoes dos sistemas de comunicagdes sem fio (e.g., campanhas de drive-
test com rotas previamente definidas, aglomeracdo espacial de dispositivos em func¢do das
ruas e prédios das cidades). Neste sentido, a realizacdo da amostragem espacial a partir
da densidade de probabilidade uniforme € plausivel nos casos onde ndo ha um controle a
priori sobre a localizagdo dos dispositivos ou a falta de conhecimento sobre os padroes de
movimentacdo espacial relacionados com os dispositivos da rede.

O conjunto {P(s;), ..., P(Sy90)} serd utilizado na aprendizagem de parametros para que
a variabilidade espacial do processo aleatério, provocada pelo sombreamento log-normal,
possa ser capturada pelos métodos geoestatisticos, visando as predicdes do REM. O éxito
nesta captura ocorre quando a amostragem espacial consegue acompanhar as variacoes
espaciais do ambiente de rddio. Isto permite que o preditor Kriging explore a covariancia
estimada para alcancar melhores predicoes espaciais.

O primeiro resultado de aprendizagem de parametros é mostrado em (d) e consiste
na regressio do modelo da tendéncia por meio da aplicacdo do estimador (1.10) sobre
o conjunto de medidas {P(s;), ..., P(S59)}, para obtencdo de &. As medidas de perda
por percurso afetadas pelo sombreamento log-normal sdo mostradas a fim de formar um
comparativo entre o modelo da tendéncia utilizado (log-distancia) e os resultados da

regressao do modelo a partir da estimacdo de a.
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No caso da simulacdo, o resultado alcancado @ = 4,005 indica um desempenho
relativamente satisfatério, pois a = 4. A diferenca entre & e a ocorre em funcdo da
variabilidade das medidas em virtude do sombreamento do canal sem fio e do conjunto
finito de medidas coletado. A partir dos resultados de estimacdo de a, é possivel obter {1
e remover a tendéncia das medidas {P(s;), ..., P(S500)} para que o vetor z, que representa
as variagoes espaciais do sombreamento, seja obtido e utilizado nas etapas posteriores da
aprendizagem de parametros.

Os resultados de estimacdo do semivariograma e do covariograma experimentais
sdo mostrados na forma de pontos em (e) e (f). A quantidade de pares de observacoes
usados para o cdlculo de cada semivaridncia e covaridncia também é mostrada nas
caixas numéricas. Sobre as estimativas, € possivel observar a variacdo no numero de
observacOes agrupadas para a obtencdo dos resultados experimentais. Os agrupamentos
foram realizados até a distancia de 200 m, pois apenas um pequeno nimero de observagoes
coletadas se distanciava acima de 200 m. Agrupamentos de distancias lags entre 100 e
150 metros resultaram em mais de 1000 combinacoes (pares de observacdes), enquanto os
agrupamentos com distancias lags pequenas néo se beneficiaram de muitas combinacdes.

Os comportamentos crescente para o semivariograma e decrescente para o
covariograma refletem o aumento da dissimilaridade e a reducéo da similaridade a medida
em que a distancia entre os pares de observacoes é aumentada. Nota-se a formacdo de um
patamar no semivariograma experimental que se aproxima da varidncia do sombreamento
do canal sem fio (o> = 25), mostrada com a linha tracejada em (e). Tal patamar é formado
a partir de distancias lags maiores que 50 m. Um resultado similar pode ser visualizado no
comportamento do covariograma, onde uma queda mais significativa da covariancia ocorre
a partir de distancias acerca de 50 m.

Finalmente, as linhas sélidas em (e) e (f) consistem nos resultados de ajuste dos
modelos analiticos exponenciais contemplando a estimacdo de b = [22,02 43,46] com
a técnica LS. As diferencas entre 6 # 0 e @ # a ocorrem em razdo das caracteristicas
do ambiente de rddio, da distribuicdo espacial e da quantidade de medidas coletadas
e, sobretudo do desempenho atingido pelas técnicas de estimacdo com a abordagem
geoestatistica. O resultado obtido com o vetor 6 finaliza a fase de aprendizagem de
parametros e se mostra essencial por duas razdes: i) permite que informacoes possam ser
extraidas sobre o ambiente de rddio e ii) permite que o preditor Kriging possa explorar
a covariancia espacial capturada a favor das predicoes na geracdo do REM. Na pratica, é
importante mencionar que ndo hd o conhecimento a priori do semivariograma do ambiente
de radio e, portanto, a estimacdo do covariograma e do semivariograma experimentais
se torna necessaria. Sobre este aspecto, o uso de um conjunto de medidas para teste do
modelo é essencial, pois permite verificar o desempenho das predicdes obtidas apds a fase
de treinamento. A préxima sec¢do se dedica a mostrar os detalhes sobre o funcionamento
do preditor Kriging, iniciando a fase de predicoes do REM.
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1.4.2 Preditor Kriging - Processos Gaussianos

A aprendizagem de parametros possibilita a predicao espacial, mas tdo importante quanto
a realizacdo das predicOes € a obten¢do de um valor com elevada acuracia (confidvel) para
a poténcia de recep¢do em coordenadas espaciais onde nao foram realizadas as medidas,
especialmente no caso do REM. A teoria de processos Gaussianos fornece o preditor Kriging
(da terminologia geoestatistica), que consiste no melhor preditor linear para o problema de
predicdo no sentido de minimizagéo do erro quadratico médio de predicdo espacial [11-16].
Antes de apresentar as particularidades do Kriging, é fundamental analisar o problema da
predicdo de forma geral, envolvendo a minimizacdo do erro quadrdtico médio de predicdo
(MSPE - Mean Square Prediction Error).

Em um primeiro momento, para encontrar o preditor geral que minimiza o MSPE,
considera-se o vetor de varidveis aleatdrias observadas, que representam a VR, denotado
como z, e a varidvel T, que consiste na VA, cujos valores aleatérios devem ser preditos, a
partir do vetor de medidas z. O preditor espacial T é uma funciio das medidas observadas,
i.e., T = f(z) e o seu MSPE é dado por

MSPE(T) = E{(T — T)?}, (1.14)

em que E{-} é o operador esperanca, relacionado com a distribui¢do conjunta de T e z
por meio de T. A minimizacio do MSPE(T") é obtida quando o preditor consiste no valor
esperado condicionado as observacdes, i.e., esperanca condicional, T = E{T|z}, conforme

o desenvolvimento [16, pp.134-135]:

Demonstragdao.
E{(T — 1)} = E{E{(T — T)*|z}}, (1.15)

em que E,{-} e E;{-} sdo aplicados em relacdo a z e a T, respectivamente. Da definicdo da

variancia, o termo E, {(T — T)?|z} pode ser reescrito de acordo com
E{(T — T)*|z} = Var; {(T — T)|z} + [E {(T — T)|z} *. (1.16)

Condicionada a z, a funcdo do preditor T = f(z), resulta em um valor constante. Com isso,
tem-se que Var{(T — T)|z} = Var{T|z} e E.{(T — T)|z} = E.{T|z} — T, resultando em

E{(T — T)?|z} = Var;{T|z} + [E{T|z} — T 1 (1.17)
Aplicando o operador E,{-} sobre a equagdo (1.17), temos a expressdo do MSPE,
E{E{(T —T)?|z} = E{(T — T)}?> = E,{Var;{T|z}} + E,{[E;{T|z} — TT*}. (1.18)

Verifica-se que somente o segundo termo de (1.18) depende da forma do preditor T e vai &

zero se, e somente se, T = E{T|z} levando & minimizacio do MSPE. O
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E fundamental mencionar que a obtencéo do preditor T = E{T|z} segue diretamente
da escolha do MSPE como critério a ser otimizado, ou seja, o preditor dado pela esperanga
condicional é 46timo no sentido de minimizacdo do MSPE, que ndo necessariamente é a
melhor métrica para a avaliacdo de desempenho em aplicagdes especificas que se baseiam
em predicOes espaciais. Ainda assim, em fun¢do do interesse especifico na acurdcia e
precisdo dos resultados, a métrica MSPE e a sua raiz quadrada (RMSPE - Root Mean Square
Prediction Error) sdao amplamente utilizadas na andlise de desempenho das predicoes em
sistemas de comunicacoes sem fio [6-9] e, por isso sdo adotadas neste trabalho. De fato, sdo
os requisitos de desempenho das aplicacoes de telecomunicagdes que permitem qualificar
os resultados de MSPE alcancados com as predicoes espaciais. Neste sentido, busca-se por
preditores espaciais com elevada acurdcia, robustos frente aos efeitos do canal sem fio e de
complexidade ndo proibitiva, além de se adequarem ao funcionamento e a disponibilidade
de recursos das aplicacoes.

O preditor Kriging visa atender as caracteristicas citadas e, de fato, a linearidade
da regressdo de distribuicoes Gaussianas multivariadas permite demonstrar que a técnica
Kriging converge para o preditor da esperanca condicional quando o processo aleatdrio
espacial é Gaussiano [12, pp. 638]. No ambiente de radio, a caracteristica Gaussiana
deriva diretamente do sombreamento log-normal do canal sem fio. Com isso, diferentes
varia¢oes do método Kriging podem ser utilizadas em fungéo das caracteristicas do problema
de predicdo, especialmente da média do processo aleatério P(s).

A Tabela 1.2 mostra as variantes dos métodos Kriging, de acordo com o modelo
da tendéncia. Nas circunstancias em que o valor da média u é conhecido a priori, o
método Kriging simples (KS) é aplicado. Neste caso, ndo hd um modelo de tendéncia
para os dados, uma vez que a média u é conhecida. Entretanto, ndo é comum assumir
o prévio conhecimento da média u, sobretudo na prdtica, pois isto exige o acesso a varias
realizacdo do processo P(s). Particularmente no caso dos sistemas de comunicagdes sem fio,
o envio de medidas ao longo do tempo para a ERB (acesso a mais realizagdes do processo
aleatdrio espacial), depende da capacidade da rede em prover os recursos de banda e energia
necessarios, além do controle para tais transmissoes. Esta situacdo pode ser tornar critica
em aplicacbes que possuem restricoes de recursos ou exigem consumo minimo de energia
nos dispositivos (e.g., redes de sensores). De outro modo, o método Kriging ordindrio (KO)
assume a estacionaridade da média do processo P(s), ou seja, u é constante ao longo do
dominio espacial D, mas precisa ser estimada [11-16]. Com isso, o preditor KO se concentra

nas variacOes espaciais em torno da média do processo aleatdrio P(s).

Tabela 1.2 - Predicdes Espaciais - Métodos Kriging

Método Kriging Média Modelo da Tendéncia
Kriging Simples (KS) Conhecida Nenhum
Kriging Ordindrio (KO) Desconhecida Constante

Kriging Universal (KU) Desconhecida Func¢édo das Coordenadas Espaciais
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O comprometimento da estacionaridade em funcdo da presenca da tendéncia leva ao
uso do preditor Kriging universal (KU), que busca realizar a modelagem néo estaciondria da
tendéncia, incorporando-a ao funcionamento do preditor espacial. A principal dificuldade
no uso do KU estd na estimacdo do semivariograma, que serd afetado diretamente pela
caracteristica ndo estaciondria da tendéncia e que possui pardmetros a serem estimados
[23]. Além de comprometer o desempenho de predicdo, isto implica na necessidade
do conhecimento a priori do semivariograma do processo aleatério, incluindo restri¢des
sobre as funcdes base da tendéncia, que devem ser linearmente independentes [11-16].
Geralmente, o KU considera monomios de baixo grau e superficies suaves (cujas poténcias
ndo excedam o grau polinomial dois) para a modelagem nio estaciondaria da tendéncia [11-
16]. No caso especifico do ambiente de radio, a perda por percurso ¢ modelada com fungoes
ndo lineares nas coordenadas espaciais (raiz quadrada e logaritmos), incluindo expoentes
que podem ser maiores que dois, o que eleva a complexidade da incorporacao da tendéncia
ao preditor KU. A situacdo se torna critica nos casos onde mais fun¢oes base sdo utilizadas
(e.g., uso de modelos de perda por percurso mais complexos).

Frente a esta situacdo, este trabalho adota a estratégia detrending, que prioriza a
estimacdo seguida da remocdo da tendéncia das medidas capturadas para que os valores
regionalizados possam ser obtidos e o preditor KO possa ser aplicado ao problema de
predicdo. De forma analitica, a estimativa produzida pelo preditor KO consiste na

combinacio linear das medidas z = [Z(s;) ... Z(sy)]", de acordo com

N
Zyxo(So) = Alz= Zliz(si), (1.19)
i=1

em que Zy,(s,) € o resultado escalar da predi¢do em uma coordenada espacial desconhecida
Sy, obtido por meio do vetor coluna de pesos Kriging A, com dimensdes N x 1, e do vetor
coluna de medidas z, com dimensdes Nx 1. Nota-se que a coordenada espacial desconhecida
s, em (1.19) é levada em conta através dos pesos Kriging A;, cujos valores dependem das
covaridncias relacionadas com a coordenada espacial s,, que é alvo da predicdo. E por esta
razdo que o modelo analitico do semivariograma e seus parametros 6 sdo essenciais para
os preditores Kriging, conforme serd mostrado nas explicacdes adiante.

As caracteristicas do preditor espacial KO estdo associadas a dois fatores importantes:
i) a busca pelos pesos 6timos Kriging A; que minimizam o MSPE, que consiste na variancia
do erro de predicdo espacial, Var{Zy,(s,) — Z(s,)} e ii) pela condicdo imposta aos pesos

Kriging, assumindo a estacionariedade, de modo que (1.19) seja ndo enviesado, i.e.,

v v (1.20)
=Zki,u—,u=O=> Zki =1.
i=1

i=1

E{Zxo(s0) — Z(s)} =E{ D A:Z(s)— Z(s0)} = D A, B{Z(s)} —E{Z(s0)} = 0
=1 i=1
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A variancia do erro de predicdo espacial é expressa por

Var{Zo(50) — Z(s0)} = E {(Zio(s0) — 2(5)) } ~E{(Zwos0)  2(s0))} . @.2D)

Considerando a condicdo de ndo viés para o segundo termo em (1.21) e usando
a definicdo do preditor KO em (1.19), é possivel expandir o primeiro termo de (1.21),

resultando na seguinte expressdo para a variancia do erro de predicéo espacial,

Var{ Zgo(50) = Z(s0) } = E{ Z2,(80) — 2Zi0(80)Z(50) + Z%(s0) }
=E{22(s0)} +E{2%(s0)} —2E{Zeo(50)Z(s0)}

= 20 2 A ELZ()Z(5)) — 2 D 4 BIZ()Z(s0)} + E{Z*(50)}-

i=1 j=1

(1.22)
Ressaltando as seguintes defini¢des da funcdo covaridncia espacial

E{Z(s)Z(s))} = C(s;, 8;) + u%;
E{Z(s)Z(s0)} = C(s:,80) + 1% (1.23)
E{Z*(sp)} = C(0) + p*,

e substituindo-as em (1.22), torna-se possivel encontrar a relacdo entre a variancia do erro

de predicdo e a funcdo covariancia, dada por

Var{Zyo(so) — Z(s)} = D, > A4iA,C(s;,8;) —2 D A,C(s;,80) + C(0). (1.24)

i=1 j=1 i=1

Conforme mencionado, o problema central do preditor KO consiste em encontrar os
valores de A; que minimizam (1.24) sob a condicdo de néo viés em (1.20). A solucdo é
encontrada com a aplicacdo do método dos multiplicadores de Lagrange através da seguinte
funcéo lagrangiana [12, pp. 163],

N
¢ (i, v) = Var{Zyo(sg) — Z(so)} +2v{ D 4 —1}, (1.25)
i=1
em que v é o multiplicador de Lagrange. Derivando a func¢édo (1.25) em relagcdo aos pesos

Kriging e ao operador de Lagrange, é possivel obter

op(A; N N
d)a(—xm =+2 ) | A4;C(s;,5) =2 ) Cls:,80) + 2 =0,
: j=1 i=1

N (1.26)

8¢(/1n v) +2{Z7‘l ~1}=0, comi,j=1,...,N.

Este resultado permite formular o sistema composto por N+1 equacdes de covariancias
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do preditor espacial KO, expresso de acordo com

Z)L]C(si,sj) +v=C(s;,8), 1,j=1,...,N,
j
Z)Li - 1.

Reescrevendo o sistema de equacoes (1.27) de forma matricial, tem-se CA, = ¢, i.e.,

(1.27)

C(sy,81) ... C(sy,sy) 1 A C(sy,80)
C(sy,s1) ... C(sy,sy) 1 An C(sy,So)
1 1 0 v 1

em que C consiste na matriz de covaridncias obtida entre todas as coordenadas espaciais
s relacionadas com as medidas observadas z, A4, € o vetor de pesos Kriging (incluindo o
multiplicador de Lagrange v) e ¢, € o vetor de covariancias entre as coordenadas espaciais
s e a coordenada espacial alvo da predicio s,. E importante notar que a composicio das
matrizes C e ¢, é realizada a partir da aplicacdo do modelo analitico de covariancia e do
vetor 0 obtido na fase de aprendizagem de parametros. Assim, o calculo dos pesos 6timos

Kriging para a solucdo do sistema de equacoes envolve a inversdo matricial
A,=C"c,. (1.28)

A relago entre as fungbes covaridncia e semivariograma, C(s;,s;) = C(0) — y(s;,s;),
pode ser aplicada em (1.27) para reescrever o sistema de equagbes em funcdo do

semivariograma, I'A, = 3,

v(s;,81) ... y(sy,sy) 1 Ay v(s1,80)
v(sy,81) ... y(sy,sy) 1 An Y(sn»So)
1 ... 1 0 — 1

em que I' é a matriz de semivariancias entre as coordenadas espaciais s e 5 é o vetor de
semivariancias que relaciona as coordenadas s e a coordenada alvo da predicéo s,.

A predigdo espacial Zy,(s,) é dada pela combinacéo linear entre as medidas do vetor
z e os pesos Kriging A; obtidos em (1.28). Finalmente, a predicdo da poténcia de recep¢ao
na coordenada alvo s, é obtida com a estimativa da poténcia de recepcdo média (i(s,) e a

predicdo Zyy(s,), de acordo com

P(s) = f1(80) + Zo(S6) = i) + D A Z(sy). (1.29)

i=1
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1.4.3 Simulacao da Fase II - Geracao do REM

A Figura 1.7 mostra os resultados da Fase II para a geracdo do REM com a aplicacdo do
preditor Kriging, a partir das medidas coletadas do processo aleatdrio espacial mostrado
anteriormente (Figura 1.6). O mapa verdadeiro da poténcia de recepcao, submetido aos
efeitos da perda por percurso média e do sombreamento log-normal, é apresentado em (a),
enquanto a geracdo do REM, obtida através da combinacéo da estimacdo da tendéncia com
as predicoes KO, é mostrada em (b). Por meio do comparativo entre os mapas (d) e (e),
é possivel observar que o preditor KO foi capaz de capturar a variabilidade espacial desta
realizacdo do ambiente de rddio, que é necessdria para as predicdes espaciais. Ainda assim,
os mapas em (c) e (f) mostram que as diferencas (magnitude) entre as predi¢des da poténcia
de recepcdo e do sombreamento comparadas aos valores verdadeiros do ambiente de radio
flutuam espacialmente nos mapas. Embora as diferencas sejam relativamente pequenas em
uma parte significativa da area de cobertura da ERB, é possivel observar algumas regides
nas quais as predi¢cdes ndo tiveram acurdcia. Este resultado foi observado para diversas
realiza¢des do ambiente de radio e refletem a necessidade de avaliar o desempenho esperado
dos preditores com o propdsito de verificar se os métodos geoestatisticos consistem em uma
solucdo efetiva na geracdo confidvel do REM. Sobre este aspecto, é importante ressaltar que
o Kriging prové uma estimativa esperada da poténcia de recep¢do e que apresenta melhor
acurdcia, pois é obtida no sentido de minimizacdo do MSPE.

Mapa Diferenca

Poténcia de Recepgao 0 Poténcia de Recepgdo e o REM

300Mapa de Ambiente de Radio (REM)

-40

— — 200 40 200 8

3 ) 0

e e £ e 2

T 150 5 % = o

£ 60 J g 0 3 g 150 6o

> 100 > > 100 4
-80 80

50 50 § 2
-100 £
-100 2
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
X (metros) X (metros) x (metros)
(a) (b) (c)
Mapa Diferenga
Sombreamento do Canal sem Fio Mapa de Predigdo Espacial (KO) Sombreamento e Predigdo KO
300 g r g — 5 10 300 10 300 12

y (metros)
@
o

A 2 M i - _10 v
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

x (metros) x (metros) x (metros)

(d) (e) (f)

Figura 1.7 — Resultados de simulacdo: (a) poténcia de recep¢do no ambiente de rddio; (b) REM; (c) mapa
diferenca: poténcia de recepcdo e o REM; (d) sombreamento log-normal do canal sem fio; (e) predicoes
espaciais via KO e (f) mapa diferenca: sombreamento e predi¢des KO.
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1.5 Conclusoes e Perspectivas

Este capitulo apresentou um modelo de predicdo espacial baseado em uma abordagem
geoestatistica para a geracdo de mapas de ambiente de rddio em sistemas de comunicagdes
sem fio. Fundamentos sobre os processos aleatdrios espaciais foram introduzidos e aplicados
na modelagem de um ambiente de rddio em telecomunicacées. O modelo de predicao
espacial formulado é caracterizado por uma fase de treinamento que, a partir de um
conjunto limitado de medidas, possibilita a construcdo do REM por meio da fase de
predicOes espaciais. Discussoes sobre as caracteristicas e limitacdes do método de geracgéo e
as técnicas de estimacdo foram colocadas. Simula¢des computacionais permitiram verificar
que o preditor espacial Kriging da geoestatistica conseguiu capturar a covariancia espacial
do sombreamento log-normal do ambiente de raddio e, com isso, consiste em uma alternativa
ao desafio de geracdo do REM com maior acuracia.

Sobre a perspectiva de trabalhos futuros, é possivel mencionar a investigacdo dos
impactos provocados por alteracoes na distribuicdo estatistica dos dados em relacdo a
densidade de probabilidade Gaussiana, tanto na fase de aprendizagem de parametros como
nos preditores, além do estudo de diferentes abordagens para a geracdo das predicdes do
REM. Em termos de utilizacdo, estudos das diversas aplicacoes de comunicacdes sem fio que

se baseiam nos resultados de predi¢cdo obtidos também se apresentam como perspectivas.
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CAPITULO

2

Antenas Phased Array

Bruno Suarez Pompeo (Centro Tecnoldgico do Exército), Leandro Guimardes

Figueroa Pralon (Centro Tecnoldgico do Exército)

2.1 Introducao

Atualmente, antenas do tipo phased arrays sdo largamente utilizadas e exploradas,
tanto em aplicacOes civis quanto em aplicaces militares, devido as suas particularidades.
Dentre suas principais aplicacdes, pode-se citar o uso em comunicacdes moveis, satélites,
atividades oticas e acusticas, equipamentos médicos e modernos sistemas de radares.

A primeira antena desse tipo, operacional, que se tem registro foi desenvolvida durante
a Segunda Guerra Mundial, obtendo baixa precisdo. Durante as décadas de 50 e 60,
a teoria foi estudada intensivamente tanto nos Estados Unidos, no laboratério Lincoln
no Massachusetts Institute of Technology, quanto na antiga Unido Soviética no Leningrad
Electrical Engineering Institute [1],[2]. Todavia, apesar desse estudo ter iniciado a mais de 50
anos, ainda nos dias de hoje, buscam-se métodos que exploram ao maximo as caracteristicas
de tais sistemas, assim como equipamentos que diminuam o seu custo [3].

A teoria de antenas phased arrays ¢ muito ampla e com tdpicos tdo complexos que
por si s6 sdo temas de diversos livros e linhas de pesquisa na literatura especializada.
Nesse contexto, ¢ importante ressaltar que o objetivo deste capitulo é prover ao leitor,
em linhas gerais, os principios basicos de funcionamento de sistemas que empregam
tal tecnologia, abordando os desafios, vantagens e desvantagens existentes, bem como
exemplos de aplicacdes, sem o aprofundamento em determinados temas especificos ou
derivacdoes matemadticas complexas, que podem ser encontrados, caso haja o interesse, nas

referéncias indicadas ao longo do texto.
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2.2 Conceitos basicos

Antenas do tipo phased arrays sdo definidas como arranjo de antenas onde € possivel
modificar o diagrama de radiagdo resultante através da mudanca de fases e amplitudes de
cada antena do arranjo. O principio bdsico de arranjos de antenas baseia-se nas interagdes
construtivas e destrutivas de ondas, que foram demonstradas em 1801 pelo cientista inglés
Thomas Young. Em seu experimento confirmou-se que ondas que se combinam em fase
em determinado ponto reforcam-se mutuamente, enquanto que ondas que se combinam
em fases opostas cancelam-se uma a outra naquele ponto [4]. O mapeamento da energia
associada a cada ponto do espaco, devido i s interferéncias das ondas eletromagnéticas
irradiadas por diferentes antenas em um arranjo, ¢ chamado de diagrama resultante do

arranjo de antenas.
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Figura 2.1 — Exemplo de diagrama de antena em coordenadas polar e poténcia em dB
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Antenas phased arrays consistem em multiplos transmissores/receptores (elementos
ativos) coerentemente alimentados cada qual com respectiva fase e amplitude. A
multiplicidade de elementos permite um controle mais preciso do diagrama da antena,
diminuindo 1é6bulos secundérios e modelando o seu padrao de formacéo [5]. Pode-se dizer
que a razao principal de se utilizar esse tipo de antena é a possibilidade de direcionar o
feixe principal de forma eletri ‘nica, fazendo com que a mudanga de direcdo desse feixe
seja realizada quase que instantaneamente (intervalo de tempo dependente da mudanca
de fases e amplitudes em cada elemento ativo, geralmente na ordem de unidades de
microssegundos), diferente de um equipamento de antena fixa e giro mecéanico. Dessa
forma, ndo se faz necessario o uso de um motor, componente esse, sendo um dos principais
responsdveis pelo tempo médio entre falhas de um equipamento.

O diagrama gerado pelo arranjo dependerd basicamente da geometria imposta entre
os elementos ativos, das ponderacdes (amplitude e fase) fornecidas a cada um deles e
obviamente das caracteristicas de cada elemento ativo. Como cada aplicacdo exige um tipo
de antena adequada, assim como um diagrama resultante, ndo existe um padréo especifico e
otimizado que seja aplicavel a qualquer projeto. As figuras 2.2a, 2.2b e 2.2¢ sdo exemplos de
equipamentos que utilizam antenas phased arrays. O primeiro é o radar terrestre americano

Pave Paws, o segundo é um radar aerotransportado no caca russo MiG-29 e o terceiro é o
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satélite de comunicacdo Iridium-Next desenvolvido pelas empresas Motorola e Lockheed
Martin. Note que os formatos sdo distintos.

PR, 5=

(a) Radar terrestre Pave-Paws (b) Radar aerotransportavel (c) Satélite de comunicacédo

Figura 2.2 — Exemplos de aplica¢des que utilizam arranjos de antenas.

A geometria do arranjo é compreendida pelo nimero de elementos ativos que
compdem o sistema, pelas distdncias entre eles e pela forma como estdo dispostos,
podendo essa tltima ser unidimensional (linear), bidimensional, adotando formato circular,
retangular, hexagonal, entre outros ou em casos especificos até tridimensional. Essas
caracteristicas impoem certos limites ao sistema, vantagens e desvantagens. Como dito
anteriormente, cada aplicacdo exige um tipo diferente de antena, levando em conta custo
e limitacgdes fisicas impostas pelo projeto. Como exemplo, arranjos dispostos em linha sé
conseguem varrer um unico plano, mas sdo mais simples e menos custosos, enquanto que os
planares varrem em trés dimensoes, mas geralmente necessitam de uma grande quantidade
de elementos, e consequentemente, um maior custo e maior gasto de energia. As vantagens
e desvantagens de cada formato serdo discutidas na préxima secdo.

As ponderacoes atribuidas a cada elemento sdo compostas por mddulo e fase, e por
isso descritas como grandezas complexas, possibilitando uma modelagem matemadtica do
sistema. Considere um arranjo planar, bidimensional, contido no plano xz, com N elementos
em x e M elementos em z, estando distantes entre si de d, em uma mesma linha e d,, na
vertical, em uma mesma coluna, inclinada de um angulo a (Figura 2.3). Aplica-se uma
amplitude A,,, e uma defasagem ¢,,, em cada elemento nm.

Para um ponto P no espaco, cujas coordenadas esféricas sdo dadas por (Rp,0p,¢p)
relativas ao centro do plano de antenas, com R, muito maior do que % (campo distante),
sendo L o comprimento da maior dimensao do arranjo e A o comprimento de onda central
do sinal transmitido, pode-se considerar que a onda que chega em P é planar, assim como a
onda que chega no arranjo proveniente da reflexdo de um objeto contido no ponto P também
é planar. A partir dessa suposi¢do, pode-se dizer que a contribuicdo em fase e amplitude
de cada elemento, em func¢do do azimute e da elevaciao do respectivo ponto, no sinal que
chega no arranjo é dada por

Jj2mRnm

(QP’ ¢P)Anmej¢nme g (21)

Snm(eP) ¢P) =D

Onde [ 65, ¢p] séo, respectivamente, o azimute e a elevacio do ponto P, D, ¢ o valor

enm
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¥

Figura 2.3 — Geometria de um arranjo planar qualquer visto de frente

do diagrama do elemento ativo nm na direcdo 6, e ¢,, R,,, é a distancia do ponto P ao
elemento nm e A é o comprimento de onda do sinal eletromagnético radiado.

— A A A
Como Rp =Ry cos ¢psin 0,1 +Rp cos ¢ppcos O] + Ry sin ¢pk, a Eq.2.1 pode ser escrita

como:
Jj2nRp . Jj2m(xpm cos ¢ sin O+zpy, sin )
Snm(QP: ¢P) = Denm(GP: ¢P)e A Anmej¢nme g (22)
Sendo:
md
X, =nd, + —
o * tana
Znm = Md, (2.3)

Considerando a contribui¢do de todo o arranjo e que todos os elementos possuem o
mesmo padrdo de radiacdo (aproximac¢do comumente utilizada), o diagrama gerado pela

antena é dado por:

M N
j27 . j27t(Xpm cos ¢ sin O+2nm sing)
D(Op, 0p) =Do(Op, §ple 7= » | > Aypeitme TS 2.4)

m=1 n=1
onde o primeiro termo é chamado de Element Factor pois depende unica e exclusivamente
do elemento de antena e o segundo termo é chamado de Array Factor (AF) pois indica a
contribuicao de todo arranjo devido i s defasagens e amplitudes impostas em cada elemento.
Assim, omitindo a exponencial complexa multiplicativa dependente de R, (fase constante),

pode-se dizer que o diagrama da antena é dado por:

D(QP,¢P) :De(9P5¢P)AF(9P5¢P) (2.5)

Por exemplo, para um arranjo linear, ou seja, M = 1, o mddulo do diagrama gerado,
em dB, para 6 = 60° é ilustrado na Figura 2.4, indicando a contribuicdo do Array Factor e

a contribuicdo do Element Factor. A pergunta é: como € possivel direcionar o feixe para um
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angulo desejado?
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Figura 2.4 — Diagrama de um arranjo de antenas linear com apontamento 6 = 60°

Analisando a Eq.2.4, note que, dada uma direcdo (6, ¢), a fungdo Array Factor

. . 27(x p COS § 5in O+, si .
fornecerd o méximo valor quando ¢, = —2& COS‘PS;“ 2ns9) oy seja, quando o produto

das duas exponenciais complexas atinge o valor mdximo para todos os elementos - o valor
unitario. A soma nessa direcdo serd igual a NM (quantidade de elementos no arranjo).
Como dito anteriormente, com base na geometria, nas ponderag¢des utilizadas em
cada elemento ativo e nas caracteristicas eletromagnéticas dos elementos, um diagrama
resultante é formado, podendo ser um diagrama de recepcdo ou de transmissdo. Esse
diagrama é definido por caracteristicas importantes, conforme mostrado na Figura 2.5,

onde:

Diagrama Normalizado (1)
T T TS T T T T i T T

£
@)

(5)

Diretividade (dB;

Azimute (graus)

Figura 2.5 — Diagrama gerado por um arranjo de antenas linear

(1) - Lobulo principal (Mainlobe)

s (2) - Largura de 3dB (Beamwidth)
m (3) - Lébulos secunddrios (Sidelobes)
w (4) - Pico dos l6bulos secunddrios

m (5) - Relacdo Primario - Secunddrio (SLR)
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2.2.1 Grating Lobes

Seja um arranjo de antenas linear recebendo um sinal, cujo comprimento de onda é A,
oriundo de um ponto P, na dire¢do 6, em relacao ao centro do arranjo, conforme mostrado

na Figura 2.6. Note que a diferenca de fase entre elementos adjacentes é dada por:

Figura 2.6 — Defasagem entre elementos devido a uma onda planar de direcéo 6,

A¢p =2ndsinb,/A (2.6)
Dessa forma, a diretividade da antena passa a ser dada por:

N—l . 27tnd sin 6 ¢
D(6,) = E Al el%n (2.7)
n=0
onde ¢, e A, sdo a fase e a amplitude adicionadas ao elemento n do arranjo.
Considerando a fase nula no centro do arranjo, para que haja interferéncias
construtivas dos sinais recebidos por cada elemento, deve-se subtrair uma fase igual em
cada elemento. Sendo assim, a fase resultante em cada elemento n, para qualquer angulo
0, pode ser dada por:

e]27'tnd sinBy/A—j2nndsin 6 /A (28)

Como a fase é uma grandeza que se repete em um periodo de 27 radianos,
dependendo das escolhas de d e 6, podera haver pontos de maximo ndo somente no 1ébulo
principal escolhido, mas também em outra dire¢do. Esses l6bulos ambiguos sdo chamados
de grating lobes. Analisando a Eq.2.8, havera grating lobes quando a fase, em cada elemento,
para um éngulo 6, escolhido de ponderagéo, for multiplo de 27t. Assim, a imposicdo da

distancia d para que nao haja grating lobes dado um angulo 6, de apontamento é dado por:

2Tﬂd(sin 0o —sin6,) = 2kn

KA d< 2.9)

d =
| sin 6, — 1]

H
|| sin 6, —sin 6, ||

Logo, note que d = % garante a ndo existéncia de grating lobes, independente
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do angulo de apontamento. Para geometrias mais complexas, uma pratica comum € o
levantamento de dreas permitidas de varredura do feixe no espaco de tal sorte que nédo

haja grating lobes. Exemplos desses gréficos serdo apresentados na segéo 2.3.

2.2.2 Formato do diagrama de antena

Como mencionado anteriormente, o diagrama de antena possui determinadas
caracteristicas que precisam ser especificadas em cada aplicacdo. Em um arranjo de antenas,
as ponderac¢des impostas em cada elemento causam impactos nessas caracteristicas - largura
de 3dB, direcdo do 1ébulo principal, 16bulos secunddrios e ganho do diagrama - mudando
dessa forma o formato completo do diagrama. Os diagramas gerados a partir de um arranjo
de antena podem ser divididos em basicamente dois tipos: Pencil beam ou Shaped Beam. O
primeiro é definido como um diagrama de alta diretividade, em elevacio e azimute, fino
como um lapis (“pencil”). Em uma antena qualquer, gerando um diagrama do tipo Pencil
Beam, a largura de 3dB é dada pela equacao 2.10.

KA

— (2.10)

QBdB = I

Onde, K é uma constante conhecida como fator de largura de feixe dependente do tipo de
antena e das amplitudes que a alimentam (quando se trata de um arranjo de antenas), L
é o comprimento da antena em determinada dimensao (ou do arranjo de antenas) e A é o
comprimento de onda no espaco livre.

Ja o diagrama do tipo Shaped Beam pode assumir um formato tdo préximo quanto se
queira, seguindo determinada funcdo. Um exemplo cléssico desse tipo de diagrama é o que
segue uma cossecante ao quadrado?.

Apresentaremos a seguir, de forma sucinta, formas de geracdo de diagramas a partir

das ponderacdes impostas em cada elemento do arranjo.

Janelamento

Quando somente as amplitudes dos elementos sdo modificadas, deixando a fase
condizente com a direcdo onde se quer apontar o feixe, chamamos a distribuicdo de
amplitude de funcdo janela ou simplesmente janelamento. Existem diversos janelamentos
conhecidos na literatura e citaremos alguns nessa subsecdo. Essas janelas sdo utilizadas na
andlise harmi ‘nica para reduzir indesejaveis efeitos relacionados ao vazamento espectral,
porém cada qual com suas particularidades relacionadas a deteccdo, resolucdo, confianca
e facilidade de implementacdo [6]. A tabela 2.1 fornece os valores de K (vide Eq.2.10),
da relacdo Primdrio-Secundario(SLR) e do fator multiplicativo no ganho do lébulo

principal(G).

2Esse tipo de diagrama é bem comum quando se quer garantir a mesma poténcia, independente da
distincia ao alvo, dada uma altitude.
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EXEMPLOS DE FUNGOES JANELAS
Janela K SLR(dB) G
Uniforme 0.89 -13 1.00
Hamming(0.54) 1.30 -43 0.54
Gaussian(a=3.0) 1.55 -55 0.43
Blackman 1.68 -58 0.42
Dolph-Chebyshev(a=4.0) | 1.65 -80 0.42

Tabela 2.1 — Caracteristicas de Janelamentos

Percebe-se que quanto menor a largura de 3dB (quanto menor, mais estreito é o Ié6bulo

principal), maior é o ganho, porém menor é a relacdo SLR. Sendo assim, a escolha de
janela tem um cunho pratico, sendo utilizada a que maior se adequa ao projeto em questao.
Como exemplo, a distribuicdo em amplitude de determinados janelamentos, assim como
seus espectros em frequéncia, sdo mostrados na Figura 2.7.
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Figura 2.7 — Exemplos de janelas

Para aplicacdes onde se usam diferencas de fases lineares nos elementos ativos da
antena, o uso de janelamentos é bem eficaz, pois o projetista conhecendo as janelas
existentes é possivel encontrar uma que atenda aos requisitos de projeto. As janelas de
Hamming e de Taylor sdo bastante utilizadas na prdtica pois alcancam um nivel baixo para
o maior l6bulo secundario pois usa suas descontinuidades espectrais para cancelar esses
16bulos préximos do l6bulo principal. Essa ultima € interessante pois o projetista limitando
o valor da SLR, existird um janelamento de Taylor préprio para alcangar esse valor.

E importante citar que independente da janela utilizada, com o deslocamento do feixe
principal de um angulo 6 ha uma perda de ganho e um alargamento da largura de 3dB.
Isso se deve ao fato do comprimento da antena ser diminuido virtualmente, como se ela
tivesse inclinada em relagdo ao seu eixo principal e seu comprimento passasse a ser igual a
L' = LcosO, e consequentemente:
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KA KA
=== 2.11
L’ LcosB ( )

Existem casos onde janelamentos ndo podem ser usados, como por exemplo quando

/I _ /
G’ = GycosH Opw
se quer um diagrama com descontinuidades, ou quando se quer um diagrama com
determinada forma diferente de uma funcéo sinc(-). Para isso existem outras maneiras de

se encontrar as fases e amplitudes que precisam ser utilizadas em cada um dos elementos

ativos. Dentre essas maneiras existentes, serdo citadas algumas.

Método da Transformada de Fourier

Esse método é usado quando se deseja um determinado formato de diagrama,
indicando a funcdo que o define. Como o AF é dado pela soma de produtos entre
ponderacoes e defasagens temporais (exponenciais complexas), essas ponderagdes podem
ser encontradas através da transformada inversa de Fourier, sendo a funcédo o préprio AF,

conforme mostrado na Eq. 2.12.

A/2d
w, = — AF (u)e 72mund/2 gy (2.12)
—a/2d

Onde u = sinf. Esse método fornece o menor erro quadrdtico médio em relacdo ao
diagrama para d > % Para distancias menores, o dominio da integracdo excede a regido
visivel e a definicdo do diagrama ndo sera unica [5]. Vale citar que quanto maior for o

numero de elementos no arranjo, menor serd o erro entre o diagrama desejado e o obtido.

Método Woodward-Lawson

Esse método, assim como o da Transformada de Fourier, é usado quando se quer atingir
um determinado padrdo de diagrama de antena. Baseia-se na soma de diagramas do tipo
Pencil Beam deslocados, consistindo em um algoritmo de superposicdo. As ponderacdes
impostas em cada elemento do arranjo sdo dadas pela soma das ponderacoes utilizadas em
cada diagrama gerado, ou seja, se o elemento i necessita de uma ponderacio w;, = a, e/

para gerar a k-ésima sinc(-), para gerar o diagrama final sua ponderacdo serd dada por:
w; =ZN_ wy = aq;e/ (2.13)

Método polinomial de Schelkunoff

Esse método é usado quando se deseja criar nulos em determinadas direcdes. Baseia-
se em escrever o AF como um polini “'mio de grau N, com N sendo o nimero de elementos

usado no arranjo. Dessa forma, fazendo gz = /¢ = ¢/2m4¢0s9/2+6 pode-se escrevé-lo como:
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AF = Z}leanz"_l =a;+ ayz +az* + ...+ ayz !

IAF || = lla,llllz =z llllz = 25 l...[l2 — 2, (2.14)

onde z;, com 1 <i < N sdo as raizes do polini ‘'mio.

Assim, dada a estrutura da antena e o comprimento de onda do sinal
transmitido/recebido, uma regifo de possiveis nulos é criada. A partir dessa regido, define-
se os nulos desejados, ou seja, os valores de z;. Finalmente, tendo o AF criado, encontra-se

os valores das ponderacdes necessdrias.

2.2.3 Formacao de feixes Adaptativa (Adaptive Beamforming)

Algoritmos adaptativos permitem que o sistema, de forma automadtica, manipule o
diagrama gerado com base nos sinais recebidos, ou seja, com base no cendrio em que se
encontra. As pondera¢des impostas em cada elemento do arranjo sdo selecionadas a fim de
otimizar algum critério de performance (Relacdo Sinal-Interferéncia, Erro médio quadratico,
Ganho...). Serdo citados em seguida alguns critérios de otimizacdo utilizados com essa
finalidade.

Minimo Erro Médio Quadratico (MMSE)

O Minimo Erro Médio Quadratico é um critério de otimizacdo que visa minimizar o
erro entre uma funcdo desejada e a funcdo gerada. O diagrama em blocos bésico deste

método é dado abaixo.

Saida y(t)

@ m—p Erro et)

Sinal desejado d(t)

)| Filtro Otimo
Sinal de entrada x(t)

Figura 2.8 — Diagrama em bloco de filtro 6timo

O vetor x(t) pode ser dado pela soma de sinal s(t), interferéncia (jammer) a(t) e
ruido n(t). Assim, aplicando as ponderacoes w(t) nos elementos do arranjo, a saida y(t) do
formador de feixe é dada por:

y(t) =wx(t) (2.15)

Assim, o erro pode ser dado por:

e(t)=d(t)—wx(t) (2.16)
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E assim, o erro médio quadratico sera:
MSE =E[e*(t)] =d?*(t)—w d*(t)x(t)—=[d*(t)x () Fw + wix(t)xF (t)w (2.17)
Minimizando o fator MSE, encontra-se o vetor ponderac¢do w,,, dado pela Eq.2.18
Wopt =Ry Tax (2.18)

Sendo R, = E[x(t)xH(t)] e r,q = E[d*(t)x(t)]. Essa solucdo é chamada de solucio de
Wiener-Hopf.

Linearly Constrained Minimum Variance (LCMYV)

O LCMV é um algoritmo que minimiza a poténcia total de saida do arranjo sujeita a
restricbes impostas em uma matriz de restri¢des (C*) dada uma direcéo pré-determinada de
apontamento. As restricdes em C” sdo dadas em termos de nivel maximo de poténcia que
o diagrama deve ter em determinadas dire¢oes. O nimero de restricdes necessariamente
devera ser menor do que o nimero de elementos no arranjo. As ponderacdes impostas em

cada elemento sdo dadas pelo vetor w,,,, onde:

wope =R;'C(CPR;'C)'Cw (2.19)

Um exemplo de um diagrama gerado com restricoes de nulos em —30° e 10°, sendo a

direcdo de apontamento em 0° é mostrado na Figura 2.9.

10 T T T T T T T T T

0+ 4
0 il
20 - il
-30
A M\
50 L I 1 n 1 1 L L 1

-80 -60 -40 -20 0 60 80

1
20 40

Poténcia Normalizada em (dB)

3

Angulo (graus)

Figura 2.9 — Exemplo de diagrama gerado através do método LCMV - nulos em 10° e —30°

Minimum Variance Distortionless Response (MVDR)

No caso especifico onde C*w = 1, no algoritmo LCMV] o algoritmo se reduz { resposta
MVDR. Isso quer dizer que o algoritmo preserva a poténcia em determinada direcdo de

apontamento, enquanto suprime interferéncias e ruidos em outras direcbes. Assim, as
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ponderacoes impostas em cada elemento do arranjo sdo dadas por:

R;'C

=— (2.20)
CHR.'C

Wopt
Esse algoritmo equivale ao MMSE e fornece a solucdo de maxima relagdo Sinal-Ruido
dentro de um fator de escala.

Existem outros algoritmos de criacdo de diagrama que ndo foram mencionados.
Atualmente, pode-se citar avancos em técnicas que utilizam Algoritmo Genético,

Inteligéncia Artificial e métodos de otimizacao utilizando custos e penalidades, por exemplo.

2.3 Arquiteturas e componentes de arranjos de antenas

Nesta secdo serdo abordadas diferentes arquiteturas e componentes de arranjos de
antenas, com suas respectivas vantagens e desvantagens. Dentre os principais fatores
a serem considerados durante a especificacdo de um arranjo de antenas, destacam-se
a confiabilidade/falha dos moédulos utilizados, limitacGes relativas ao controle de suas
amplitudes e fases, tamanho, peso, fabricacdo, polarizacdo, requisitos de ganhos e,
principalmente, custos associados [5, 7].

Os principais componentes de um arranjo de antenas sio:

s Elemento de antena

Os elementos de antena sdo os responsaveis pela transicdo de energia entre o sistema
de alimentacdo e o espaco livre. Em arranjos de antenas, devido i s restricdes espaciais,
€ mais comum o uso de microstrip e stripline, substituindo os tradicionais dipolos e

guias de onda.

w# Transmissor

Os transmissores desempenham um papel de muita importancia em sistemas que
empregam arranjos de antenas, sendo diretamente responsaveis pela eficiéncia do
sistema, poténcia, aquecimento, tamanho e peso. Os primeiros sistemas a empregar
arranjos de antenas utilizavam a tecnologia de tubos (Traveling Wave Tubes), por
serem capaz de prover elevada poténcia (aproximadamente 40dB) a um baixo custo,
apesar das elevadas perdas inseridas. Atualmente, transmissores de estado sélido séo
largamente empregados [2]. Apesar de apresentarem falhas, com o amadurecimento
da tecnologia, o tempo médio entre falhas atual de dispositivos desta natureza passa
de 500.000 horas de uso. Transmissores de estado so6lido, geralmente, sdo dispositivos
de baixa poténcia (até 100W). Dentre os principais materiais disponiveis no mercado,
destacam-se os a base de Silicio-Germanio (SiGe), Nitreto de Galio (GaN) e Arseneto
de Gdlio (GaAs). A poténcia provida por cada dispositivo é uma funcdo da frequéncia

de operacao. Por exemplo, componentes a base de SiGe apresentam poténcia acima de



Antenas Phased Array 44

11

(11

11

100W quando operando em banda L, porém esta decai rapidamente se a frequéncia de
operacdo aumenta. Os demais, apesar de apresentarem poténcias menores, na faixa

de 20W, sdo mais estaveis com o aumento da frequéncia de operacao.

Receptor

O principal componente de um receptor de um arranjo de antena, comumente
responsavel por ditar seu desempenho, é o amplificador de baixo nivel de ruido (Low
Noise Amplifier - LNA). Ademais, como arranjos de antenas usualmente sdo sistemas
monostdticos, ou seja, 0 mesmo conjunto de antenas é utilizado para transmissao e
recepcdo de sinais, circuladores que provejam eficientes isolamentos entre os referidos
circuitos também se tornam essenciais.

Defasador

Defasadores sdo os responsdveis por controlar a diferenca de fase entre elementos
do arranjo, de forma a se conformar o feixe da forma desejada. Estes podem ser
implementados através do controle via fase ou por atraso no tempo. A quantizagio
de defasagens possiveis que estes podem prover tem papel fundamental na anélise
de desempenho do sistema. Dispositivos com 4 a 6 bits vém sendo popularmentee
empregados, apesar de ndo ser incomum encontrar dispositivos com menos (3)
ou mais (até 8) bits de quantizacdo. A maioria dos defasadores de fase sdo
dispositivos analdgicos, controlados, por uma tensdo de entrada. Existem diversas
tecnologias para tais componentes: ferrite, diodo, circuitos de transistor, sistemas
microeletromecanico (MEMS), cada qual com vantagens e desvantagens no tocante
a peso, consumo de poténcia, tempo de troca entre estados e perda [2]. Defasadores
de ferrite, por exemplo apresentam tempo de troca de fase da ordem de dezenas de

microssegundos e baixo consumo de poténcia, da ordem de dezenas de watts.

Sistema de Alimentagdo

O sistema de alimentacdo é o mecanismo responsdvel por distribuir coerentemente
a poténcia entre os transmissores e receptores e os elementos do arranjo, que pode
ser confinado ou espacial. Em sistemas confinados a energia é aprisionada dentro
de guias de onda, cabos ou mesmo placas de circuito impresso, criando uma rede
para levar o sinal a cada elemento, podendo ser em série ou em paralelo. Sistemas
em série sdo mais simples e baratos, porém ndo permitem um bom controle do
diagrama resultante. Ademais, cada divisor de poténcia insere perdas ao sistema que
devem ser consideradas. Sistemas em paralelo, em contrapartida, por proporcionarem
linhas de tamanho igual, sdo mais adequados para aplicacées de elevada largura
de banda, como sera visto mais para frente, apesar de serem mais caros e pesados.
Sistemas espaciais também sdo mais economicamente vidveis, apesar de requererem
irradiadores em ambos os lados do arranjo (lentes) e apresentarem perdas referentes

i parcela de energia que ndo chega ao arranjo. Todavia, a auséncia de um sistema
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de alimentacdo cabeado reduz custos e peso, tornando-se boas alternativas para

comunicacoes moveis.

2.3.1 Radares ativos e passivos

A maneira como se alimenta em fase e amplitude os elementos ativos depende
da arquitetura do sistema. Existem dois tipos principais de arquiteturas para arranjo
de antenas: arranjos passivos e arranjos ativos. O primeiro tem como gerador de
poténcia um unico transmissor que divide a energia gerada por uma rede de elementos.
Tem como vantagens ser uma solucdo simples e mais barata e como desvantagem um
controle menor em amplificacdo e atenuacdo, impedindo o uso efetivo de janelamentos
[8]. Adicionalmente, é conveniente destacar que tanto os defasadores, quanto o sistema de
alimentacio, tém de ser capazes de suportar uma elevada poténcia de transmissao.

Ja o segundo possui um mddulo Transmissor/Receptor em cada elemento de radiacéo
(em adigdo aos defasadores), garantindo assim uma menor perda de poténcia i hmica
e capacidade de criar ponderacoes em amplitude, dando uma maior flexibilidade na
conformacdo de feixes. Como desvantagens, citam-se uma maior geragdo de calor,
ocasionando um maior aquecimento da antena e, consequentemente, a necessidade de uma
quantidade maior de dissipadores e métodos de troca de calor, além de ser um sistema de
custo elevado [8]. A Figura 2.10 apresenta exemplos simples dessas arquiteturas em que
sdo utilizados circuladores, divisores de poténcia, amplificadores de alta poténcia (HPA),

amplificadores de baixo nivel de ruido (LNA), conversores analdgico/digital e misturadores.

Processamento
Digital de Sinais

Processamento

LS — }_@7

Controle de! | Controle de
defasagens | | amplitudes

(a) (b)

Figura 2.10 — Arquiteturas de arranjos: exemplo de (a) arranjo passivo com sistema de alimentacdo em
séria e (b) arranjo ativo com sistema de alimentacdo em paralelo.

Em geral, a figura de ruido de arranjos passivos é mais elevada do que em arranjos
ativos, isto porque nesses ultimos os LNAs estdo localizados proximos da extremidade do
arranjo, minimizando as perdas que o precedem. Com relacdo ao custo e confiabilidade,
apesar de arranjos ativos serem mais custosos e mais suscetiveis a falhas, eles ndo somente

apresentam um custo menor por watt radiado, como também suas falhas tém impacto menor
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no desempenho do sistema (por serem mais distribuidas), induzindo uma depreciacdo

gradativa no sistema, vital para aplicacoes de arranjos de antenas.

2.3.2 Digital Beamforming

A aplicacdo das ponderacgdes (amplitude e fase) para conformacdo do feixe de
recepcdo pode também ser realizada de forma digital no caso de arranjos ativos. Nesse
cendrio, apds cada LNA estaria um conversor analégico digital, para que a soma dos sinais
ponderados seja feita nesse dominio. Tal arquitetura possui um elevado custo, devido i
adicdo dos conversores, porém introduz uma flexibilidade muito grande para o sistema,
permitindo a compensacdo de elementos com falhas, conformacdo de diagramas com
complexos requisitos de nulos e 16bulos secunddrios e aplicacdes que exijam multiplos feixes
simultaneos, sem a necessidade de hardwares especificos para tal.

Existem dois grandes desafios de tal tipo de implementacdo. O primeiro estd no
consumo de poténcia e encapsulamento mecanico do sistema, que deve comportar os
circuitos, incluindo refrigeracdo, em um espacamento de aproximadamente metade do
comprimeto de onda entre elementos (de modo a se evitar grating lobes). O segundo é
no poder computacional exigido para processamento dos sinais recebidos de cada elemento
de antena ou subarray (técnica abordada na préxima secdo). A Figura 2.11a apresenta um

exemplo de configuracdo de um arranjo ativo que emprega digital beamforming.

2.3.3 Subarranjos (Subarrays)

Configuracoes ativas e que empregam digital beamforming, pelo numero de
componentes necessarios, se tornam custosas, e, consequentemente, muitas vezes inviaveis.
Existem diversas aplicacbes que ndo necessitam de amplo grau de liberdade e por tanto,
um compromisso na escolha da arquitetura pode ser estabelecido, reduzindo o nimero
de componentes, em troca de desempenho do sistema. Nesse contexto, encontram-se as
arquiteturas baseadas em subarranjos, em que elementos sdo agrupados entre si, reduzindo
o grau de liberdade do sistema, porém, reduzindo também os custos associados [5]. A Figura
2.11b apresenta um exemplo de configuracdo de um arranjo que emprega 3 subarranjos e
digital beamforming.

O Array Factor de um arranjo de antenas que utiliza subarranjos passa a ser escrito

como

N M
AF(0,) = Z e‘ﬂf”d (sin(6)—sin(6,)) Z e%(sm(e)—sinwo)) (2.21)

n=1 m=1

onde N é o numero de elementos, d o espacamento entre eles, M o nimero de subarranjos
e As o espacamento entre os centros de fase destes.
Note que o projeto de arquiteturas baseadas em subarranjos néo € trivial, e dentre os

compromissos inerentes a tal tecnologia, resta o fato de que a distancia entre os centros
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Figura 2.11 - Arquitetura de arranjos: exemplo arranjo com (a) beamforming digital e (b) subarranjo.

de fase de cada subarranjo normalmente é maior do que metade do comprimento de onda,
indicando a necessidade de uma andlise minuciosa dos grating lobes do sistema, visto que
os subarranjos podem inserir os comumente chamados quantization lobes ao diagrama
resultante. Nesse contexto, é importante mencionar que os elementos de cada subarranjo
podem ser escolhidos de forma a otimizar o diagrama resutlante.

Ademais, uma desvantagem de sistemas que empregam tal arquitetura é a maior
depreciacdo de desempenho devido i falhas de componentes. Isso porque, dependendo do

elemento que apresentar mau funcionamento, todo o subarranjo pode ficar comprometido.

2.3.4 Geometrias do arranjo

7

A arquitetura mais simples de um arranjo de antena ¢ a uniforme linear (ULA).
Nessa configuracdo os elementos sdo espacados de forma equidistante ao longo de uma
linha. Conforme apresentado na se¢do anterior, seu modelamento € relativamente simples,
sendo uma simplificacdo dos arranjos planares. Arranjos tridimensionais também podem
ser utilizados, mas estdo fora do escopo do presente capitulo.

Em arranjos planares, a configuracdo retangular pode ser considerada a mais
tradicional. Seu modelamento é dado conforme a Eq.2.4, considerando a = 90°, e portanto
os diagramas resultantes em azimute e elevacdo sdo derivados diretamente de equagoes
fechadas e conhecidas. Todavia, existem outras configuracées que podem ser empregadas,
quer seja para reducdo do numero de elementos, diminuindo o custo, quer seja para
adequacdo a uma limitacdo fisica imposta pela aplicacdo. A Figura 2.12 apresenta algumas
geometrias comumente empregadas em arranjos de antenas planares.

Arranjos concéntricos sdo formados por multiplos arranjos circulares. Considerando

um unico circulo, com alimentacao uniforme, o diagrama resultante apresenta um formato
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(a) (b) ()

Figura 2.12 — Geometrias tipicas de arranjos de antenas: (a) arranjo concéntrico, (b) arranjo hexagonal
e (c) arranjo triangular.

similar ao obtido com arranjos lineares (ULAs), com diretividade dada por [5]

2J1(0)
0
onde J;(0) é a funcdo de Bessel de primeira espécie. Note que a complexidade no

E(0)=rno (2.22)

modelamento acompanha a mudanca de geometria.

Arranjos hexagonais, por sua vez, apresentam um modelamento relativamente
simples.  Estes proporcionam um janelamento natural ao arranjo, uma vez que a
diminui¢do de elementos nas bordas naturalmente reduz os lébulos secundérios, ao custo
do alargamento do feixe principal. Por essa razdo, normalmente sdo empregados quando
hd limitacdo no custo, inviabilizando um sistema de controle de feixes mais robusto
(defasadores e amplificadores/atenuadores).

Arranjos triangulares, como o da Figura 2.12c, também sdo bastante comuns na
literatura, provendo um espagamento entre elementos bastante eficiente (a 7# 90° na Eq.
2.4). Note que com o mesmo numero de elementos é possivel diminuir a distancia entre
eles em uma das dimensoes, caracterizando o diagrama resultante de outra forma.

No projeto de arranjos com geometrias especificas para determinada aplicacdo, é
importante considerar o posicionamento dos grating lobes resultantes. A Figura 2.13a
apresenta o exemplo de um diagrama de grating lobes de um arranjo de antenas retangular,
enquanto a Figura 2.13b apresenta o mesmo diagrama, ambos em sine-space', considerando
um arranjo triangular.

Ao realizar a varredura, altera-se as coordenadas (u,v) relativas ao lébulo principal
do arranjo (localizado dentro do circulo unitario verde) e, consequentemente, altera as
demais coordenadas relativas a cada grating lobes (migracdo de grating lobes), que podem
entrar na regido de varredura do arranjo (circulo unitario verde) ou ndo. Os grating
lobes representardo um problema se estiverem localizados dentro dos limites de varredura
especificos da aplicacdo para a qual se destina o arranjo.

Note que a posicdo e quantidade de grating lobes é funcdo da geometria do arranjo.

!Sine-space é uma representacio comumente usada em sistemas que utilizam arranjo de antenas para
indicar direcdo no espaco. Essa notacdo € derivada a partir de uma transformacdo matemadtica dos angulos
de azimute e elevagio([0, ¢ ] — [u,v]).
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Figura 2.13 — Diagrama de grating lobes em arranjos planares no plano U-V onde a drea verde mostra o
espaco permitido sem Grating Lobes e as linhas vermelhas indicam os limites a partir dos quais havera
Grating Lobes.: (a) arranjo retangular com 225 elementos e (b) arranjo triangular com 195 elementos.

De forma geral, se os elementos estiverem espacados a uma distdncia menor que metade
do comprimento de onda (como ja mencionado na primeira secdo), os grating lobes estardao
a distancias angulares acima de 90°, ndo gerando ambiguidade em todo o espaco. Arranjos
mais compactos necessitam de mais elementos, para uma mesma area efetiva, e apresentam
desafios mais complexos de alimentacdo, refrigeracdo e agrupamento de componentes.
Arranjos mais espacados, em contrapartida, necessitam de menos elementos, ou seja,
custos menores e nio requerem atencdo especifica devido a proximidade dos elementos.
Dessa forma, fica evidente a necessidade de se otimizar a geometria do arranjo, de forma
a se minimizar o numero de elementos sem a existéncia de grating lobes na regido de
varredura. E importante destacar que a inclinacio mecénica do arranjo como um todo
também influencia na posicédo dos grating lobes e deve ser considerada na andlise.

A geometria de arranjos de antenas ndo precisa ser sempre uniforme. Para diversas
aplicacOes é necessario que o feixe seja estreito, mas ndo necessariamente que o ganho seja
elevado. Dessa forma, é preciso que a antena seja larga sem que o nimero de elementos
seja alto, reduzindo consideravelmente o custo do sistema. Nesse contexto, encontram-
se os arranjos nao-uniformes (Figura 2.14), muito utilizados em cendrios com elevada
interferéncia eletromagnética, comunicacoes via satélite e interferi “'metros para astronomia.

Note que o diagrama resultante de um arranjo ndo-uniforme apresenta distorcdes,
principalmente no tocante a 16bulos secundarios. Todavia, estes podem ser controlados e

otimizados em funcdo dos elementos removidos do arranjo.

2.3.5 Arranjos Banda larga

Até o momento foi feita andlise considerando que o sinal transmitido é banda estreita,
ou seja, o comprimento de onda em todo espectro pode ser considerado tinico. Quando a

aplicacdo exige que o sinal transmitido/recebido pelo arranjo de antenas seja banda larga
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Figura 2.14 - Arranjo planar ndo-uniforme de dimensdes 15 x 15: (a) geometria e (b) diagrama
tridimensional resultante no sine-space.

um novo desafio é introduzido ao projetista [9]. Isso porque o Array Factor passa a ser dado
por

N sin(6) _ sin(6p) )
20

O e

n=1

(2.23)

Dessa forma, o mdximo da funcdo (Iébulo principal do diagrama resultante) nao

, . . . in(0 in(6
ocorrerd quando sin(6) = sin(6,), mas sim, quando %() = %0"),

apontamento (referido na literatura como squint) maximo dado por

gerando um desvio de

AO = _B tan(6,) (2.24)
fo

onde B ¢ a largura de banda do sinal

Nesse contexto, é conveniente definir dois conceitos: largura de banda instantanea e
largura de banda operacional. A primeira advém da definicdo de largura de banda como
os limites de frequéncia em que o desvio de apontamento é metade da largura de 3dB do
l6bulo principal. Dessa forma, e lembrando ainda que este alarga conforme o angulo de

apontamento, pode-se dizer que

B[%] ~ 2A634p [°] (2.25)

onde Af34p € a largura de 3dB no apontamento 0°. Note que a largura de banda
instantanea € limitada pela arquitetura do arranjo. A Eq. 2.25 pode limitar a gama de
aplicacOes em que arranjos de antenas podem ser utilizados. Todavia, a largura de banda
operacional pode ser muito maior que a descrita pela referida equacgédo, se ao invés de
defasadores de fase, forem utilizados atrasos no tempo na arquitetura, que provém a mesma
variacdo de fase, independente da frequéncia do sinal. Dessa forma, pode-se afirmar que a
largura de banda operacional é uma funcdo dos componentes, considerando o aumento nos

custos associados para troca.
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2.4 Erros e Tolerancias em Antenas Phased Array

Apesar da Eq. 2.4 apresentar o diagrama em campo distante de um arranjo de
antenas como o produto entre o diagrama de um elemento e um Array Factor, esta
ndo leva em considera¢do nenhum aspecto prdtico referente i tecnologia. Arranjos de
antena sdo formados por componentes de hardware e software que, ao serem integrados,
operam de forma conjunta para conformacgdo de diagramas de radiacdo que atendam
requisitos especificos de uma determinada aplicacdo. Cada componente do sistema
apresenta limitacdes e erros que impactam diretamente o comportamento e o controle
dos demais [10]. O correto gerenciamento dessa dindmica indica o desempenho do
arranjo. Por exemplo, o sistema pode utilizar o melhor e mais custoso método para célculo
das ponderacbes de amplitude e fase a serem empregadas nos transmissores/receptores,
objetivando que o diagrama resultante atenda a complexos requisitos de ganho, 16bulos
secunddrios e nulos em posicdes especificas, porém, se os defasadores e amplificadores
ndo conseguirem prover tais ponderagoes (limitacdes de quantizacdo ou erros), o diagrama
resultante néo terd o formato desejado [11, 12].

Antes de continuar a andlise de erros em arranjos de antenas, primeiramente, é
conveniente ressaltar que todo sistema apresenta uma quantidade maxima aceitdvel de
erro, caracterizada por sua tolerdncia. Idealmente, este valor seria nulo, porém existem
custos associados que devem ser levados em consideracdo [13]. Normalmente, este cresce
de forma exponencial com o inverso da tolerancia. Ademais, cada componente eletri ‘nico
ou mecanico do sistema apresenta uma determinada tolerancia, que influi de maneira
distinta no comportamento do arranjo. Dessa forma, torna-se uma tarefa dificil mensurar
pontualmente quais requisitos cada componente deve satisfazer. Como alternativa, em
cardter pratico, é comum empregar como figura de mérito a acurdcia de 0.2dB em amplitude
e £3° em angulo de apontamento do diagrama de radiacdo resultante.

Na teoria de arranjos de antenas, erros sdo normalmente caracterizados por seus
valores RMS (Root Mean Square), que para distribuicoes de média nula sdo equivalentes
ao desvio padrao. O erro de fase devido i quantizacdo, inserido por um defasador de K bits,
por exemplo, pode ser modelado por uma distribuicdo triangular (de parametro meio passo

de quantizac¢do) e seu desvio padrdo escrito como

_ 1 =
CET

Os erros em arranjos de antenas podem ser constantes ou varidveis e geralmente

(2.26)

sdo classificados como periddicos, aleatérios ou sistémicos. Erros sistémicos sdo aqueles
previsiveis, sendo fun¢do do apontamento do feixe, de pardmetros da forma de onda
empregada ou das condi¢des de operacdo. Erros mecanicos devido i montagem do arranjo,
que influenciem no distanciamento entre elementos podem ser classificados como erros
sistémicos, por exemplo. O impacto dos mesmos sera direto nos diagramas resultantes,

independente das ponderacdes em fase e amplitude utilizadas. Erros sistémicos podem
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ser medidos em fdbrica, porém dificilmente serdo totalmente compensados, devido 1 s
incertezas introduzidas na medicdo e efeitos de quantizacdo. Em geral, causam desvios de
apontamentos ou picos de 16bulos secundérios. A melhor forma de mitiga-los é reduzindo
os intervalos de calibracdo e trabalhando em técnicas para compensacao.

Erros aleatdrios, como o préprio nome sugere, sdo imprevisiveis. Falhas em
componentes, por exemplo, normalmente sdo de origem aleatéria. Para o correto
modelamento dos mesmos e avaliacdo de seus impactos no desempenho do arranjo é
conveniente o uso de ferramentas estatisticas, relacionadas aos primeiros e segundos
momentos. Todavia, tais ferramentas sdo mais descritivas em arranjos com elevado nimero
de elementos (da ordem de centenas). Em arranjos pequenos, essas sdo mais complexas
e o correto modelamento de seu comportamento torna-se um desafio para o projetista.
Imperfeicoes de componentes, tais como os defasadores, atenuadores e elementos de
antena, entre outros, também se enquadram nessa categoria. Seus efeitos podem ser tanto
na fase quanto na amplitude do arranjo, alterando o diagrama de radiacéio do sistema. E
importante destacar que os efeitos causados por erros aleatdrios se espalham ao longo de
todo arranjo, levando a uma degradacédo gradual, e por isso ndo séo tdo criticos.

Ao contrdrio dos erros aleatérios, erros peridédicos tendem a se concentrar em partes
especificas do diagrama. Erros oriundos da quantizacdo dos defasadores e atenuadores
podem ser enquadrados como periddicos [5], causando desvios de fase e amplitude,
respectivamente.

Erros ocasionados por variacdo de temperatura, por outro lado podem ser periddicos
ou aleatdrios.  Variacdes de temperatura podem deteriorar o comportamento de
componentes eletri ‘nicos, como defasadores e atenuadores, mas também podem alterar
o tamanho e formato das antenas, que podem levar a erros de fase causando aumento
dos 16bulos secunddrios ou erros de apontamento. Em sistemas que empregam arranjos
de antenas, o projeto do sistema de refrigeracdo é vital para o seu correto funcionamento.
Deseja-se, idealmente, que o sistema nao apresente gradientes de temperatura, de modo
que a modificacdo de comportamento de seus componentes seja uniforme por todo arranjo.
Tradicionalmente, sistemas de refrigeracdo liquida tém apresentado melhor desempenho
em arranjos de antenas, e por isso sdo os mais empregados. Sistemas de refrigeracdo i
ar, normalmente, podem ser utilizados em conjunto com a liquida, porém dificilmente sdo
encontrados sistemas que dependam unica e exclusivamente da refrigeracdo i ar.

A perda de diretividade de um arranjo de antenas, que impacta diretamente na

reducdo do seu ganho e consequente aumento de l6bulos secundérios pode ser escrita como

Derro% 1—-P
D 1+oi+oi

onde Derro € a diretividade do arranjo com erros, D é a diretividade sem erros, P é a

(2.27)

probabilidade de falha de um elemento, o, € o desvido padréo do erro de fase e 0, 0
desvio padrao do erro de amplitude. O nivel médio de 16bulo secundério, por sua vez, pode

ser escrito como
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2
¢

Ne,

2
oy +0y

SL= (2.28)

onde €, é a eficiéncia da abertura.

Erros em amplitude e fase no nivel elemento causam aumento de 16bulos secundarios,
efeito similar ao apresentado por arranjos ndo-uniformes (Figura 2.14), porém sem o
controle proporcionado no projeto destes ultimos. A Figura 2.15 ilustra o diagrama
resultante de um arranjo linear uniforme (ULA) com 24 elementos e erros aleatdrios em
amplitude e fase, conforme distribuicbes apresentadas na referida figura. Note o aumento
dos lébulos secunddrios e alargamento do 16bulo principal. Por estar normalizado, a perda
de diretividade ndo pode ser observada, todavia, torna-se intuitiva, considerando que o nivel

dos 16bulos secunddrios aumentam e a energia total deve ser conservada.
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Figura 2.15 - Diagramas resultante de um arranjo de antenas com erros de amplitude e fase no sine-space.

Erros em subarranjos ou em um numero elevado de elementos de forma
correlacionada provocam erros de apontamento. O erro de apontamento pode ser escrito

como

Op=———0 (2.29)
7 1,5N ¢

C
onde o 4 ja foi previamente definido, As,; € a largura de 3dB do arranjo sem erros e N, € 0
numero de células de correlacdo de erros. Note que, quanto mais aleatdrios forem os erros,
menor serdo as N,, fazendo com que N, se aproxime do numero de elementos do arranjo,
reduzindo consideravelmente o erro de apontamento.

Erros causados pelo acoplamento mutuo entre elementos também sdo intrinsecos
a arranjos de antenas, e devem ser corretamente mapeados. Sempre que um elemento
irradia, uma parte da energia pode ser recebida por seus vizinhos, podendo modificar o

diagrama de radiacdo do mesmo e causar variagoes de impedancia (afetando o casamento)
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em func¢do da regido iluminada. Isso significa que, na prdtica, devido i s interacoes entre
elementos, principalmente na regido da borda do arranjo, os diagramas de radiacdo de
cada elemento sdo diferentes entre si, mesmo em arranjos que utilizem o mesmo tipo de
elemento, evidenciando mais uma simplificacdo da Eq. 2.4.

A correta densidade de poténcia em campo distante, em uma determinada superficie

esférica (R, 0, ¢), de um arranjo de antenas pode ser entdo escrita como [5]

1 P
5(0,9) = 4_7T£6L(1_ ITI*)D(6, $) (2.30)

onde P;,, é a poténcia de entrada na antena, €, é um fator de eficiéncia que leva em
consideracdo as perdas de circuitos, ' é o coeficiente de reflexdo da antena e D(8,¢) é
a diretividade da antena.

Note que, ao contrdrio de antenas unitdrias, que apresentam coeficiente de reflexao
bem definido e cujo ganho é dado para a situagcdo em que a antena esta casada (I' = 0), em
arranjo de antenas a impedéancia de entrada varia conforme o dngulo de apontamento, em
funcdo do acoplamento mutuo entre elementos. Dessa forma, deve-se levar em consideragdo
para o célculo do ganho tanto as perdas causadas por dissipacdo quanto por reflexdo.
Considerando um arranjo planar de drea A e comprimento de onda A, o ganho do mesmo

pode ser escrito como

A
Go=¢;(1— |r|2)4nﬁ (2.31)

Para a recepc¢do o ganho é o mesmo, considerando que a polarizacdo da antena esteja
casada com a polarizacdo da onda incidente. Caso a polarizacdo da onda incidente seja
desconhecida, é comum o emprego de antenas polarizadas circularmente. Neste caso, deve-
se considerar um fator de perda de polarizacdo no calculo da abertura efetiva da antena [5].

Outra fonte de erro, geralmente
negligenciada, mas que pode impactar significativamente a andlise e projeto de arranjos
de antenas destinados a aplicacdes com severa restricdo de nulos e 16bulos secundérios é
o erro inserido na medicdo. Isso porque, os diagramas de radiacdo devem ser medidos em

campo distante, cuja distancia minima aproximada é dada por

o

R
A

(2.32)

onde A é o comprimento de onda e L a maior dimensao do arranjo. Se for necessario levantar
com precisdo os ldbulos secundarios e nulos do sistema, esta distancia pode ser maior,
chegando a cinco vezes o estabelecido em Eq. 2.32. Note que, para arranjos de grandes
dimensoes, essa medicdo ndo € trivialmente realizdvel, sendo necessarios complexos setups
de testes, com amplas camaras anecoicas.

Por fim, vale ressaltar a importancia da existéncia de métodos para medir a
estabilidade do sistema que emprega arranjos de antenas e, circuitos redundantes

que possam ser reprogramaveis considerando os elementos com falhas. Ademais, é
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imprescindivel que seja possivel desligar elementos que ndo estejam operando conforme o
esperado, uma vez que é melhor ter um elemento a menos no arranjo, do que um operando

de forma imprevisivel.

2.5 Calibracao e Alinhamento

A Eq.2.4 modela o comportamento do diagrama resultante de um arranjo em
funcdo das ponderacoes (amplitude e fase) inseridas em cada elemento de antena. Tais
ponderacoes representam as diferencas de amplitude e fase entre os elementos necessarias
para que o arranjo gere um diagrama da forma desejada, considerando que os elementos
ndo apresentam diferenca de amplitude e que a diferenca de fase original entre eles é funcdo
apenas dos seus posicionamentos no arranjo. Dessa forma, resta claro que, ainda que sejam
calculadas as respectivas ponderagdes 6timas a serem aplicadas, faz-se necessdario medir
inicialmente e periodicamente as diferencas de fase e amplitude inseridas pelo sistema, que
podem ser constantes ou varidveis com o tempo de operacdo. A esse procedimento da-se
o nome de calibracdo. As variacdes citadas podem ser oriundas de diferencas no tamanho
das trilhas, variacbes de temperatura ao longo do arranjo (uniforme ou nao), degradacéo
dos componentes eletri ‘nicos, comprimento dos cabos, entre outros, sempre tomando um
elemento como referéncia.

Existem diversas técnicas e algoritmos de calibracdo disponiveis na literatura [14].
Cada qual com vantagens e desvantagens, que incluem o tempo de execucio, necessidade
de hardware adicional, repetibilidade em campo, precisdo e acuracia. E importante destacar
que a calibracdo deve ser realizada tanto para o circuito de transmissdo quanto para o de
recep¢do, os quais podem apresentar resultados bem distintos. Para calibracdo da cadeia
de transmissdo, é necessario transmitir o sinal por cada um dos elementos e amostra-los
novamente para andlise. Na recep¢do, em contrapartida, é necessdrio que um sinal de
referéncia seja recebido por cada elemento individualmente para afericdo das respectivas
amplitudes e fases. Nesse contexto, fica claro a dificuldade adicional em se calibrar arranjos
que utilizem subarranjos, uma vez que o acesso aos elementos de antena torna-se restrito.

Um dos melhores métodos para realizacdo da calibragdo é através da inclusdo de
um hardware adicional (sampler) ao projeto do arranjo de antena. E possivel transmitir
e receber um sinal especifico via sampler, para cada um dos elementos de antena de forma
isolada, sendo possivel, entdo, a calibracdo, respectivamente, das cadeias de recepcdo e
transmissdo do sistema. O método de calibragdo via sampler ndo necessita de nenhum
hardware externo ao sistema e pode ser executado tanto em fédbrica, quanto em campo,
inclusive durante a operacdo do sistema.

Caso o sistema ndo preveja uma linha de calibracdo (sampler), é possivel realizar
a calibracdo através do uso de hardwares adicionais. Tais técnicas, normalmente, s6 sdo
realizaveis em fabrica e dificilmente sdo reproduzidas em campo, pois seus desempenhos

normalmente sdo melhores quando realizadas dentro de camaras anecoicas. Vale lembrar,
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que tais métodos sdo realizados em campo proximo, pois a aproximacado de campo distante
necessita de uma distancia minima regida pela Eq. 2.32. Esta pode ser realizada através do
uso de uma antena de teste (probe) que varre o arranjo elemento por elemento, transmitindo
e recebendo sinais de referéncia ao longo de toda sua extensdo ou com probes periféricos
instalados em pontos fixos do arranjo [15].

A primeira configuracdo, apesar de ser extremamente precisa, até por reduzir os
efeitos do acoplamento entre a antena e a probe exige um alinhamento preciso entre esta
e cada elemento do arranjo, normalmente feito via laser, e tem um tempo de execuc¢ido
e complexidade de setup maior que os demais, uma vez que deve levar em consideracdo
a movimentacdo da probe. A segunda, considera que é possivel cancelar o efeito do
acoplamento com vdrias probes instaladas ao longo do arranjo e assim obter uma calibragdo
precisa. Todavia, para isso, é necessdrio uma analise cuidadosa dos efeitos das diferentes
probes combinadas.

Uma vez que o uso de samplers exige uma modificacdo de projeto, e que técnicas que
utilizem hardware externo adicional podem néo ser economicamente vidveis e facilmente
reproduzidas, exigindo ainda o cuidado de sincronizacdo com o hardware adicional, muito
estudo vem sendo realizado pela comunidade cientifica para realizacdo da calibragédo
de arranjos de antenas baseada no acoplamento mutuo entre elementos vizinhos [16].
Conforme mencionado na se¢do anterior, sempre que um sinal é transmitido por um
elemento de antena, este é recebido pelos demais (devido ao acoplamento) e pode ser
analisado para calibragédo do arranjo.

E importante ressaltar que para realizacio desse tipo de calibracio, duas premissas
devem ser atendidas: os elementos de antena devem ser isotrépicos (ou simétricos ao longo
das linhas e colunas), garantindo o acoplamento igual entre elementos, e deve ser possivel
o controle individual e independente de cada elemento do arranjo. Para que este método
seja viavel, é necessdrio, também, que o acoplamento entre elementos seja alto suficiente
para ser detectado, lembrando que este ndo pode saturar o receptor. Dessa forma, é comum
que a poténcia de transmissao seja alterada objetivando a adequacdo de amplitude do sinal
para realizacdo deste tipo de calibracio [14].

Os supracitados métodos sdo ilustrados na Figura 2.16.

Eimportante destacar que a calibracdo deve ser realizada para cada modo de operacio
do sistema, considerando as diversas frequéncias e temperaturas de operacao, e os diversos
niveis de quantizacdo dos atenuadores e defasadores empregados (quando empregados).
Isto nem sempre € possivel, inserindo um compromisso entre as amostras selecionadas para
realizacdo das medidas e o desempenho da calibracao.

Por fim, vale destacar que a calibracdo ndo somente é vital para o correto
funcionamento de um arranjo de antenas, como também, através dela, pode-se derivar o
diagrama de radiagdo da antena, via transformada de Fourier da distribuicdo de amplitude
amostrada. Logo, recomenda-se que esse procedimento (independente da técnica utilizada)

seja realizado em fébrica e de forma periddica durante operacao.
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Figura 2.16 — Métodos de calibracdo: amarelo - sampler; laranja - acoplamento mutuo; azul - via probe
externa; vermelho - via probe periférico.

2.6 Aplicacoes

Nessa secdo serdo apresentadas algumas aplicacoes para arranjo de antenas no intuito
de indicar ao leitor a importancia em se familiarizar com tais sistemas. Arranjos de antenas
com varredura de feixes eletri 'nica foram desenvolvidos, inicialmente, para aplicacdo
militar, em especial radares de rastreio para defesa antiaérea, durante a década de 1950
impulsionados pela invenc¢do dos primeiros defasadores de fase. Com o passar do tempo,
e a evolucdo tecnoldgica, de hardware e software, percebeu-se a imensa aplicabilidade de
tal tecnologia, fazendo com que o uso extrapolasse as aplicacdes militares (o que continua
até os dias atuais), sendo usada em diversas dreas civis, tais como comunicacdo, medicina

e mapeamento. Algumas dessas aplicagdes serdo apresentadas em seguida.

2.6.1 Radares militares

Nos dias de hoje, arranjos de antenas sdo possivelmente, o tipo de antena mais
empregada em sistemas de radares militares. Isso porque esses arranjos fornecem alta
confianca em sua aplicabilidade, ndo necessitam de partes méveis e motores, fazem
varredura de forma rdpida e eficiente e possibilitam um excelente controle de lébulos
secunddrios e criacdo de diagrama. Existem diversos tipos de radares militares que usam

tal tecnologia. Citaremos em seguida alguns deles.

Radar de defesa antiaérea

Apesar de muitos radares utilizarem antena fixa com varredura mecénica para
busca e vigilancia de setores aéreos, radares mais modernos utilizam arranjo de antenas
para auxiliar nessa tarefa, tendo varredura completamente eletri ‘nica ou entdo fazendo
varredura mecanica em azimute e eletri ‘'nica em elevacdo. Nesse tultimo caso, um feixe
estreito é definido em azimute, enquanto feixes multiplexados no tempo sdo direcionados

em elevagdo, ou entdo, transmite-se com um largo feixe em elevacao (geralmente seguindo
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um padrdo de cossecante ao quadrado) e na recepcdo utiliza-se a técnica de digital
beamforming. O radar AN/SPS-48, por exemplo, utilizado em navios da Marinha americana,
¢ um radar de busca 3-D, que utiliza arranjo de antena planar onde a varredura em azimute
¢ mecanica e em elevacdo € eletri ‘nica e seus elementos de antena sdo guias de onda.

Devido 1 possibilidade de paralelizar os processamentos em um arranjo de antenas,
além da alta taxa de direcionamento dos feixes e otimizacdo de diagrama resultante, um
sistema como esse pode compor radares do tipo multifuncdo. Com esses radares é possivel
um unico sistema desempenhar diversas atividades, geralmente multiplexadas no tempo,
tais como rastreio de alvos, busca e vigilancia setoriais e guiamento de misseis e foguetes,
podendo ser utilizados em solo ou acoplados em navios.

Para realizar diversas tarefas distintas, sistemas dessa natureza fazem uso de
um gerenciador de recursos, o qual é responsavel por listar as tarefas em ordem de
prioridade e agendar a realizacdo das mesmas, definindo o formato de diagrama a ser
usado e a frequéncia de transmissdo. Os radares mais atuais ainda permitem que o
sistema possua propriedades cognitivas, as quais com base no cendrio de operacdo atual
garantem mudancas especificas na forma de onda transmitida, diagrama de antena e
recursos utilizados. Por ser um sistema complexo e multidisciplinar, ultimamente radares
multifun¢do sdo alvos de discussdes e trabalhos ao redor do mundo, tornando-se um dos
assuntos mais em evidéncia em simpdsios e congressos sobre sistemas de radar.

$” guiamento de
armas

vigilancia

—a¢  comunicagdo

(b)

Figura 2.17 - AplicacOes em radares militares: (a) Radar AN/SPS-48, produzido pela ITT Gilfillan e
utilizado pela Marinha americana; (b) exemplo de tarefas efetuadas em radares multifuncéo; (c) Radar
de contrabateria AN/TPQ-36 da Raytheon
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Radar aerotransportavel

Radares aerotransportdveis podem ser usados para guiamento de missil lancado pela
aeronave, deteccdo, identificacdo e rastreio de ameacas aéreas, criacdo de datalink com
outras aeronaves e centros de controle e combate ar-superficie. Arranjo de antenas sdo bem
uteis nesse tipo de aplicacdo pois tém a capacidade de direcionar o feixe eletronicamente
de um extremo ao outro ao mesmo tempo que mantém o tamanho relativamente pequeno,
0 que minimiza o efeito de arrasto na aeronave. Além disso, é possivel utilizar beamforming
adaptativo para cancelar alvos indesejaveis e interferéncias multiplas. Esses sensores sdo
colocados normalmente no bico da aeronave. A arquitetura empregada pode ser passiva ou
ativa, apesar de prevalecer a dltima em radares mais modernos, ja que propicia a realizacdo

das multitarefas citadas em um unico sistema.

Radar de Contrabateria

Radares desse tipo consistem em sistemas cujo objetivo é detectar fogo lancado por
armas inimigas, tais como morteiros, obuses e foguetes, e com base nos dados obtidos
estimar a posicdo do ponto de lancamento desses projéteis, fornecendo informacdo para um
sistema de arma poder atuar em contra-ataque i bateria inimiga. Um objetivo secundéario
desses radares € estimar o ponto de impacto dos projéteis a fim de tentar diminuir os danos
que serdao causados por estes. Radares de contrabateria mais modernos geralmente sao
do tipo tridimensional, utilizam arranjo de antenas a fim de possibilitar o escaneamento
eletri ‘nico em azimute, varrendo o setor definido com feixes atualizados através de uma
alta taxa. Apds um alvo penetrar nessa area e ser detectado, passara a ser rastreado por um
unico feixe direcionado somente a ele. Enquanto o rastreio permanece, o radar multiplexa

no tempo essa tarefa com tarefa de varredura do setor e/ou outros. rastreamentos.

2.6.2 Comunicacdes Mdveis - Tecnologia 5G

Devido ao alto crescimento na demanda de servigos sem fio para transmissao de voz,
dados e videos, a tecnologia de arranjo de antenas vem ganhando forca nesse setor. O
uso de um arranjo de antenas ativo aumenta consideravelmente a capacidade da rede de
celulares. Isso porque, devido a alta densidade populacional em centros urbanos, a relagdo
Sinal-Interferéncia (SIR) torna-se um problema. Tendo um sistema onde é possivel otimizar
a transmissdo/recepgdo, colocando nulos nas direcoes dessas interferéncias (como ja citada
a possibilidade no primeiro capitulo), é possivel diminuir a influéncia destas nos sinais
desejados. Além disso, é possivel estreitar o I6bulo principal permitindo melhorar a precisdo
de posicionamento em dreas onde a cobertura GNSS ¢é prejudicada.

No contexto de comunica¢des moveis, a tecnologia 5G prevé a utilizacdo de elevadas
frequéncias de transmissao, da ordem de dezenas de GHz - banda de frequéncia chamada de
mm-Wave. Devido i s caracteristicas de tal tecnologia, arranjos de antenas se tornam uma

boa solucdo. Feixes em um arranjo planar podem ser direcionados para qualquer ponto
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no espacgo, possibilitando o aumento da capacidade do canal de sistemas de comunicacao
pessoal sem fio, alcancando altas taxas de dados, além de diminuir a relacdo sinal-
interferéncia com sua otimizacdo de sintese de diagrama [17]. Além disso, arranjos de
antenas diminuem os requisitos de poténcia para os amplificadores, visto que a poténcia de
transmissao total é dada pela soma da poténcia em cada elemento, ou seja, se cada elemento
possui um transmissor de P watts, o arranjo transmitird em seu lébulo principal 20log;,P
dB de poténcia [18].

Outra vantagem de se utilizar arranjos de antenas € que o direcionamento eletri "nico
do feixe (antena estdtica) permite que dois ou mais arranjos sejam colocados relativamente
mais préximos quando comparados a antenas omnidirecionais mesmo utilizando o mesmo
canal, sem comprometer o desempenho do servico. Isso é possivel pois cada arranjo pode
conformar seu respectivo diagrama de radiacdo de modo a nao interferir nos demais. Dessa
forma, o tamanho da célula utilizada diminui, o que significa um maior nimero de usuarios
moveis concentrados em uma menor drea sem aumentar alocacdo de espectro.

Finalmente, esse sistemas garantem links mais robustos e confidveis devido a
atenuacdo dos problemas de interferéncia no mesmo canal de frequéncia (como ja
mencionado) e multi-percurso, além da supressdo de sinais provenientes de dire¢des
indesejaveis. Em contrapartida, vale mencionar que um desafio para o uso de arranjos em
tal aplicagéo € o fato da necessidade de miniaturizacdo dos elementos de antena e circuitos

eletronicos para compor a arquitetura desejada.

2.6.3 Aeroespacial-Satélites

Os sistemas de satélite Broadcast também podem se beneficiar de arranjo de
antenas, reduzindo a poténcia de transmissdo necessdria ou aumentando a capacidade
de comunicacdo em uma determinada saida do amplificador. Alguns sistemas atuais de
TV via satélite ja utilizam tal tecnologia. Comparado ao sistema parabdlico tradicional,
arranjo de antenas sdo mais robustos quanto a mudancas climaticas, tendo menor perfil
e menor peso, o que lhes permite ser mais facilmente montados em paredes e telhados
[19]. Além disso, a conformacdo de feixes adaptativa permite objetos mdveis como avides
terem acesso a programas de TV via satélite, j4 que é possivel manter o feixe principal
direcionado a um determinado satélite, mesmo com o movimento da plataforma onde
aquela se encontra. Essa caracteristica também facilita o direcionamento do feixe sem afetar
translacdo mecanica da antena, o que requer um movimento de outras partes do satélite a
fim de deixa-lo estabilizado.

Além da utilizacdo em satélites para transmissdo de sinal de TV, arranjos de antena
podem ser usados em satélites de mapeamento. Esses satélites geralmente operam em
baixas orbitas (centenas de quili ‘metros de altitude) e usam, dentre outras técnicas,
beamforming para obter altissima resolucdo de pontos da superficie terrestre, assim como

nas dreas de hidrosfera, atmosfera, geosfera e biosfera.
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Figura 2.18 - Tandem-L - Satélite desenvolvido pelo DLR, da Alemanha, para imageamento terrestre.

2.6.4 Medicina

Um uso recente de arranjo de antenas consiste em auxiliar na radiacdo em tratamentos
de tumor em 6rgaos como pulméo e figado. Com o uso do direcionamento eletri ‘nico de
feixes, é possivel orientar o feixe para medir de forma simultanea os sinais fisiolédgicos do
paciente em pontos diferentes, a partir do local estimado de onde o tumor possa estar [20],
conforme figura abaixo [21]. Assim, arranjos de antenas podem ser usados em conjunto

com equipamentos de radioterapia.

Figura 2.19 — Uso de radares com arranjo de antenas em radioterapia

Arranjos de antenas ja estdo sendo usados também em imageamento médico para
deteccdo de cancer de mama em estagio inicial [22], assim como cancer de préstata [23].
A imagem criada através da emissdo de micro-ondas pode fornecer uma probabilidade de
deteccao bem maior que a de raio-X ou ultrassom, além de ser menos prejudicial ao paciente
comparado ao raio-X. Em termos de custo, o imageamento por micro-ondas é menor do que

solucoes alternativas e bem consolidadas no mercado tais como MRI.
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Introducao

Em varios centros urbanos, o crescimento da populacdo ocasiona problemas de
infraestrutura e de acesso limitado a recursos prejudicando a vida de milhdes de pessoas.
Uma maneira de melhorar a qualidade de vida dos cidadaos é prover servicos mais eficientes
por meio do conceito de cidade inteligente. N&o existe um consenso sobre a definicdo
deste conceito na literatura, mas uma cidade é dita ”inteligente” quando investimentos
em capital social e humano, aliados a uma infraestrutura moderna de comunicacao,
fomenta o crescimento econémico sustentavel associado a uma alta qualidade de vida, com
gerenciamento sustentavel dos recursos naturais [1]. Sob o ponto de vista da Engenharia, as
cidades inteligentes sdo estabelecidas por meio de uma infraestrutura avancada em conjunto
com tecnologias de informacdo e comunica¢gdo modernas.

Nesse contexto, as tecnologias de localizacdo desempenham um papel fundamental
para aplicacoes que promovem o desenvolvimento das cidades inteligentes. As técnicas
de localizacdo se tornaram populares com o advento do sistema de posicionamento global
(GPS, global positioning system) para aplicacoes outdoor e, nos ultimos anos, com as
redes Wi-Fi e Bluetooth para as aplicagcdes indoor. Mais recentemente, a tecnologia de
posicionamento tem se expandido para aplica¢des médicas in-body, ou seja, a localizacdo de
anomalias (lesdes, tumores, sangramentos ou, simplesmente, dor) dentro do corpo humano
[2, 3].
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A diversidade de tecnologias de localiza¢éo surge principalmente devido aos requisitos
de acurdcia associados a cada tipo de servico de localizacdo (location-based service).
Diferentes aplicacbes possuem diferentes exigéncias quanto a sua acuracia. Exemplos
classicos sdo os servicos de localizacdo outdoor e indoor: enquanto o primeiro exige
uma acurdcia da ordem de dezenas ou até mesmo centenas de metros, o segundo impoe
exigéncias para manutencdo da margem de erro em alguns poucos metros. Outro exemplo
bastante atual é o desenvolvimento de tecnologias de transporte autébnomo (self-driving)
que podem chegar a exigir um nivel de acuracia da ordem de alguns poucos centimetros.

Para atender as diferentes exigéncias de exatidao, podem ser utilizados diversos tipos
de sensores. Apenas para citar alguns exemplos, existem desde sensores baseados em
radio frequéncia (RF), responsaveis pela captura de sinais através de GPS, Wi-Fi, iBeacon
(Bluetooth) e torres de telefonia mdével, até sensores mecanicos, como magnetometro e o
acelerometro. A andlise das caracteristicas comportamentais desse conjunto de sensores,
juntamente com a escolha de algoritmos que satisfacam os requisitos de acuracia para uma
determinada aplicacdo, consiste no grande desafio imposto as tecnologias de localizacéo,
sendo responsavel por impulsionar o desenvolvimento de uma nova area de pesquisa ao
longo da ultima década.

As primeiras tecnologias de localizacdo sem fio desenvolvidas utilizavam modelos
matematicos deterministicos para estimar a posicdo de um dado objeto. O GPS, por
exemplo, faz uso das diferencas no tempo de chegada para derivar a posicdo relativa
do objeto em relacdo a um conjunto de satélites utilizados como referencial. Outras
tecnologias, como a multilateracdo, utilizam a atenuag¢éo na poténcia do sinal recebido com
relacdo a diferentes referenciais como medida para determinar a posicdo do objeto através
de modelos de propagacdo eletromagnética. Por estarem baseadas em modelos matemdticos
deterministicos, tais técnicas tendem a ser impactadas por efeitos colaterais indesejados
como a presenca de ruido, dispersdo, sombreamento, entre outros. Esses efeitos atribuem
caracteristicas nao lineares ao sistema em questdo, dificultando sua modelagem matematica
e, em ultima instancia, influenciando em sua acuracia.

Devido a complexidade natural em modelar sistemas ndo lineares, a aplicacdo de
algoritmos de aprendizado de maquina em técnicas de localizacdo parece uma escolha
natural, exatamente pelos beneficios trazidos por essa tecnologia na tratativa dessa classe
de problemas [4, 5, 6, 7]. A modelagem de sistemas complexos pode néo ser tdo dbvia e
nem sempre sua implementacdo pode ser vidvel. Sendo assim, as técnicas de aprendizado
de mdquina tem como principal caracteristica reduzir a dificuldade de implementacédo
desses sistemas ao aproximar seus resultados com performance compardvel, sem que seja
necessario implementar explicitamente as heur’isticas e os algoritmos intrinsecos a sua
modelagem.

Este capitulo estd distribuido conforme a seguir. A Secdo 3.1 traz uma revisio sobre
localizacdo, explorando parametros de sinal, classificacdo e as técnicas basicas de sistemas

de localizacdo de uma rede sem fio, com destaque para trilateracdo e fingerprinting. A
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Secdo 3.2, por sua vez, apresenta conceitos basicos de aprendizado de mdquina, com
éfase no algoritmo k-NN e na maquina de vetor de suporte. Na Secdo 3.3, a aplicagdo da
técnica fingerprinting baseada em maquinas de vetor de suporte é explicada em detalhes.
Finalmente, a Secdo 3.4 apresenta algumas oportunidades e desafios referentes a aplicacao
de técnicas de aprendizado de mdquina em localizacdo de dispositivos méveis em redes sem
fio.

3.1 Revisitando técnicas e tecnologias de localizacao

Antes de recordarmos técnicas e tecnologias de localizacdo de usudrios em redes
sem fio, é importante diferenciarmos trés conceitos fundamentais, quais sejam, posicao,
localizagdo e navegacdo. A posicdo corresponde as coordenadas geograficas do dispositivo
no globo terrestre, ou seja, é representada pela latitude, longitude e altitude do ponto. A
localizagdo se refere ao contexto especifico de um ponto, como, por exemplo, o endereco
completo de uma residéncia. E por ultimo, a navegacdo descreve a trajetoria de um
dispositivo para sair de um ponto e chegar a outro [8]. No minicurso em questio,
assumiremos que localizacdo e posicdo sdo sindénimos, ou seja, que localizacdo também
se refere Aas coordenadas geogréficas do dispositivo que se deseja encontrar.

A localizacdo de usudrios moveis em uma rede sem fio é possivel por meio de
parametros dos sinais de RE Para permitir a estimativa da posicdo do dispositivo mével,
certos parametros devem ser medidos, como, por exemplo, a poténcia recebida do
sinal. Entretanto, o parametro medido deve ter uma relagdo fisica com a posicdo
do dispositivo. Caso contrdrio, tal informacdo passa a ser irrelevante para fins de
posicionamento. Considerando que a relacdo entre os parametros coletados e a posi¢do do
dispositivo é corrompida pelo ruido adicionado pelo canal de comunicacdo, um sistema de
posicionamento possui, em geral, uma complexidade inerente. Por esse motivo, é necessario
que haja mecanismos matemadticos capazes de manipular os parametros coletados para
extrair as coordenadas geogrdficas da posicdo. Os métodos mais avancados incluem um
tratamento estatistico dos erros nas medi¢oes dos parametros de sinal [9].

No ambito dos sistemas de localizacido aplicados a redes sem fio, a presente secdo
apresenta os tipos mais comuns de parametros de sinais de RF utilizados em técnicas
de localizagdo, uma classificacdo baseada em caracteristicas de topologia e propagacido

eletromagnética e, por fim, as técnicas de localizacdo mais difundidas na literatura.

3.1.1 Tipos de parametros de sinal em redes sem fio

Os principais parametros extraidos de sinais de RF para a estimacdo da posicdo de um
dispositivo moével em redes sem fio sdo o tempo de chegada, a diferenca entre tempos de
chegada, o angulo de chegada e a intensidade de sinal recebido. A seguir, vamos detalhar

de forma bdsica cada um deles.
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O tempo de chegada (ToA, time of arrival) de um sinal de RF é o tempo decorrido
entre a saida do sinal do transmissor e a sua chegada no receptor. Assumindo que tg5 é o
instante de tempo de transmissdo do sinal a partir da estacdo moével (EM) e t; é o instante
de tempo da recepcao do sinal na i-ésima estagdo radio base (ERB), podemos concluir que
o ToA € o intervalo de tempo 7; = t; — tg. De posse do ToA e conhecida a velocidade de
propagacéo do sinal de RE é possivel estimar a distancia d; entre a EM e a ERB. Uma vez
que as coordenadas geograficas das ERBs sdo conhecidas e utilizando uma interpretagdo
geométrica, é possivel estabelecer um sistema de equagdes para a obtencdo da posi¢do da
EM.

Embora seja robusta, a técnica de localizacdo baseada em ToA apresenta como
principal desvantagem a necessidade de que os transmissores e receptores envolvidos
estejam perfeitamente sincronizados. Pequenos erros de sincronismo podem levar a erros
consideraveis no cédlculo das distancias relacionadas. Para resolver este problema do ToA,
faz-se uso da diferenca entre tempos de chegada (TDoA, time difference of arrival) dos sinais
recebidos em duas ERBs. Dessa forma, a estimativa da TDoA remove a necessidade de
sincronismo entre ERBs e EM, uma vez que apenas o sincronismo entre as ERBs ird garantir
a minimizacdo do erro. Uma das razdes para a remocao do sincronismo entre ERBs e EM é
a reducdo de complexidade do sistema.

O terceiro parametro de um sinal de RF € o dngulo de chegada ao receptor (AoA, angle
of arrival). Para a utilizagdo deste parametro, é necessario o uso de antenas diretivas, do
conhecimento exato da topologia da rede, bem como dos pontos em que os transmissores
estdo instalados. O maior problema deste tipo de parametro é o sombreamento causado por
obstaculos ao longo da trajetdria do sinal entre o transmissor e o receptor. O sinal pode ser
refletido e chegar no dispositivo com um angulo diferente do esperado [10].

Finalmente, temos os sistemas de localiza¢do baseados na intensidade ou indicador de
nivel do sinal de RF recebido (RSSI, received signal strength indicator). Geralmente, o nivel
de um sinal de RF pode ser estabelecido por um modelo de propagacao eletromagnética, no
qual diversos efeitos de propagacdo sdo contemplados, tais como atenuac¢édo, sombreamento,
propagacdo multipercurso e outros, assim como componentes de ruido e interferéncia. A
partir de modelos de propagacdo, como, por exemplo, o modelo de perda por espaco livre,
é possivel calcular a distancia maxima em que o sistema pode fornecer cobertura para os
usudrios. Portanto, conhecido o RSSI, é possivel estimar a distancia entre o dispositivo
movel e a ERB [11].

A partir deste ponto, iremos focar nos sistemas de localizacdo baseados em RSSI. Dito
isso, é importante entender como e onde o RSSI é utilizado, seja na EM ou na ERB. Isto
implicard em como os sistemas de localizacdo sem fio podem ser classificados, conforme

serd abordado a seguir.
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3.1.2 C(lassificacao de sistemas de localizacao de redes sem fio

Sistemas de localizacdo podem ser classificados conforme diversas caracteristicas.
Uma delas estéd relacionada a topologia do sistema, que, de acordo com [12], se refere
ao equipamento onde os niveis de sinal sdo medidos e também onde as medicoes
obtidas sdo processadas para estimar as informacdes de posicionamento do moével. A
Figura 3.1 ilustra quatro cenarios nos quais os parametros podem ser medidos/processados
somente na EM, somente na ERB ou ainda em ambas as estacOes, sendo cada operacido
(medicdo/processamento) realizada em uma das estacdes (EM e ERB). Quando a EM
realiza a medi¢do e o processamento, o sistema é classificado como de auto-localizagdo
(Figura 3.1a). Para permitir que a EM se auto-localize, ela precisa conhecer a localizacdo da
ERB. Essa informacdo pode ser conhecida pela rede ou ser enviada por cada ERB durante a
comunicacdo com a EM. Quando medicdo e processamento do sinal sdo executados pela
rede, ou seja, por meio das ERBs, o sistema ¢é classificado como de localizagcdo remota
(Figura 3.1b). Quando as medicGes sdo obtidas por uma estagdo e processados em outra,
o sistema emprega localizacdo indireta. Em outras palavras, quando a ERB executa as
medicoes do sinal e a EM as processa, o sistema ¢é classificado como de auto-localizagdo
indireta (Figura 3.1c). Caso contrdrio, o sistema é classificado como de localizagdo remota
indireta (Figura 3.1d).

N EM AN EM
Y RN
Medigdo e Medigdo e
Processamento Processamento
(a) Auto-localizacdo (b) Localizacdo remota
EM
Medigdo Processamento Processamento Medigdo
(c) Auto-localizacdo indireta (d) Localizacdo remota indireta

Figura 3.1 - Classificacdo do sistema de localizacdo de acordo com a sua topologia para medicdo e
processamento dos niveis de sinais de RE As linhas tracejadas representam um enlace de comunicacgéo
usado para medir o nivel do sinal de RF e as linhas sélidas representam uma transferéncia real de dados
medidos. Fonte: Adaptado de [13].

Outra forma de classificar sistemas de localizacdo é com base na cobertura da rede

sem fio. Neste caso, os sistemas de localizacdo sdo divididos em trés categorias, quais sejam,
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sistemas baseados em satélites, baseados em redes de telefonia celular e, por fim, em redes
de pequena cobertura.

O principal exemplo de sistema de localizacdo baseado em satélites é o GPS,
desenvolvido pelo Departamento de Defesa dos EUA com propoésito militar e liberado
posteriormente para uso civil. Suas principais aplicacbes sdo em navegacdo, aviacao,
topografia, controle de frotas e agricultura de precisdo, por exemplo. Muito utilizado para
prover a posicdo de um usudrio mével em ambientes externos (outdoor) [14], o GPS possui
uma acurdcia da ordem de 3m. Apesar disso, o sistema possui limitacdes em virtude da
propagacéo de sinais eletromagnéticos em dias chuvosos e em dreas com alta densidade
urbana, assim como em ambientes internos (indoor).

Em redes celulares, nas quais a cobertura esta diretamente relacionada com a area
de alcance das ERBs, independente da geracdo da rede (2G, 3G ou 4G), a acurdcia é
da ordem de 100 m [15]. Os sistemas de localizacdo baseados em redes celulares sio
bastante utilizados em ambientes urbanos e rurais. No primeiro caso, os problemas de
propagacdo de sinal estdo relacionados a obstaculos no percurso, o que nos remete aos
sistemas sem linha de visada (NLoS, non-line of sight), sujeitos aos efeitos do sombreamento
e da propagacdo multipercurso [11]. No segundo caso, os problemas de obstrucdo com a
vegetacdo interferem na propagacdo dos sinais. Por outro lado, nimero reduzido de ERBs
instaladas para prover cobertura em grandes zonas rurais pode reduzir a acuracia dos dos
sistemas de localizacdo [16].

Finalmente, em sistemas de pequena cobertura, em que a rede se baseia em
tecnologias, como, por exemplo, redes locais sem fio (WLAN, wireless local area networks)
e Bluetooth, a acurdcia é da ordem de 10 m [15]. Neste caso, os problemas relativos
a propagacao do sinal dependem do cendrio em que a rede esta instalada e seu uso é
apropriado para ambientes internos (indoor) [11].

Uma vez classificados os sistemas de localizacdo baseados em RSSI, torna-se necessario

entender como um dispositivo mével pode ser encontrado em uma rede sem fio.

3.1.3 Técnicas Basicas de Localizacao

Nesta Secdo, serdo apresentadas duas técnicas bdsicas de localizacdo, quais sejam, a
técnica baseada em lateracdo e a técnica de fingerprinting.

Define-se por lateracdo, a determinacéo da localizacdo de um ponto (EM, no caso) por
meio de argumentos geométricos, conhecidas as distancias deste ponto a um certo nimero
de pontos de referéncia (as ERBs, em nosso contexto) e as coordenadas geograficas dessas
referéncias. Quando o numero de pontos de referéncia é igual a trés, a técnica recebe
o nome de trilateracdo. Embora seja possivel utilizar mais pontos de referéncia (caso da
multilateragdo), vamos direcionar nossas explicacoes a trilateracao.

No método da trilateracdo, as distancias estimadas entre a EM e as trés ERBs
consideradas sdo obtidas a partir do RSSI extraido em cada enlace de comunicacao [17, 18].

Cabe ressaltar que, na trilateracao, a distancia também pode ser obtida a partir do ToA. No
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entanto, como o nosso foco estd direcionado aos sistemas de localizagdo baseados em RSSI,
as distancias sdo obtidas com base em modelos de propagacéo eletromagnética.

A Figura 3.2 ilustra o diagrama representativo da técnica de trilateracdo de poténcia,
na qual trés pontos de referéncia sdo indicados, assim como o ponto que se deseja estimar
a posicdo. No contexto das redes celulares, as ERBs estdo identificadas como Referéncias 1,
2 e 3, com coordenadas (x4, y;), (x5, Y,) € (x5, ¥3), respectivamente. O ponto cuja posicdo
(x,y) desejamos estimar representa a EM.

Referéncia 1

(xlr yl) O\\

AY
di
Y

Referéncia 2

(x3, ys) (')

Referéncia 3

Figura 3.2 — Representacdo gréfica do caso ideal (ndo ruidoso) da trilateracdo de poténcia. Adaptado
de [17].

Conforme ja foi mencionado anteriormente, a partir do RSSI obtido em cada uma das
ERBs, as distancias d;, d, e d; sdo estimadas com base em modelos de propagacdo. De
posse das trés equacdes que representam as circunferéncias centradas em cada uma das
ERBs, podemos expressar o problema da trilateracdo como um sistema de equagdes nao
lineares, tal que

(x _x1)2 +(y _}’1)2 = d12

(x _Xz)z + (J’_)’z)z = d22

(x—x3)*+(y—ys)* = d§
e cuja solucdo serd a posicdo (x,y) da EM, que € a estimativa da localizacdo desejada. Tal
sistema pode ser resolvido por meio de métodos matematicos, como, por exemplo, o método
de Newton-Raphson [19] ou o de Nelder-Mead [20].

A técnica de trilateracdo de poténcia pode ser utilizada em qualquer ambiente de
propagacéo, seja ele urbano, suburbano ou rural. Para este tultimo, hd uma peculiaridade,
visto que, em vdrias regioes, apenas uma ou duas ERBs ja sdo suficientes para prover
cobertura em um raio de quilémetros. Neste caso, a trilateracdo ndo pode ser utilizada,
uma vez que sdo necessarios trés RSSIs obtidos a partir de ERBs distintas.

A segunda técnica bdsica de localizacdo abordada neste minicurso é a técnica de
fingerprinting. Na realidade, as técnicas de fingerprinting correspondem a um grupo de

métodos para a localiza¢do de usudrios moveis, bastante adequados para ambientes sem
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visada direta e que podem ser aplicados em qualquer modalidade de rede sem fio [21, 22].
Existe uma enorme variedade de técnicas de fingerprinting, mas como mostrado em [21],
todas compartilham os mesmos elementos bdsicos, como, por exemplo, o fingerprint, o
banco de dados, o servidor de localizacdo, a técnica de reducdo de espago de busca e o
método de reconhecimento de padrdes.

O vetor com todas os atributos (valores observados) utilizadas no método de
reconhecimento de padroes é denominado fingerprint. Embora os parametros de sinal
comumente usados como atributos possam ser diversos, iremos enfatizar o uso do RSSI para
esta finalidade. O banco de dados, também conhecido como base de dados de correlacdo
(CDB, correlation database), é implementado ndo apenas a partir de dados coletados em
campo, mas também de predicOes realizadas por modelos de propagacédo de rddio, como,
por exemplo, o modelo COST-231 [21]. Cada fingerprint armazenado no banco de dados
¢ vinculado a uma posicdo especifica. Nesse cendrio, como ndo é vidvel fazer medigoes
em todas as posicoes, modelos de propagacdo sdo usados para generalizd-los. O servidor
de localizacdo é o elemento de rede responsdvel por receber solicitacoes de localizacéo,
consultar o banco de dados e estimar a posicdo da EM.

Para estimar a posicdo da EM, o servidor de localizacdo busca a similaridade do
fingerprint medido (EM procurada) com um fingerprint armazenado no CDB. A ideia chave é
encontrar o ponto no CDB que tenha a maior similaridade ou correlacdo com o valor medido
em campo.

A Figura 3.3 mostra um diagrama esquemadtico simplificado para a técnica de
localizacdo baseada em fingerprinting. Na Etapa 1, o cliente envia uma solicitagdo ao
servidor de localizacdo. Em seguida, o servidor solicita medi¢does da EM (destino) através
da rede de acesso de rddio. Na etapa 3, a rede de acesso envia medicOes para o servidor de
localizacdo. Depois de receber as medicoes, o servidor de localizacdo compde o fingerprint
e, na etapa 4, consulta o banco de correlacdo para obter a drea de pesquisa reduzida. Na
etapa 5, o servidor de localizagdo recebe os resultados da consulta e utiliza uma funcéo de
comparacgdo para obter a posicdo estimada da EM. Finalmente, na etapa 6, o servidor de
localizacédo envia uma resposta ao cliente.

Esta Secdo revisou os fundamentos dos sistemas de localizacdo numa rede sem fio.
Inicialmente, foram apresentados os parametros de sinal ToA, TDoA, AoA e RSSI. Em
seguida, os sistemas de localizacdo baseados em RSSI foram classificados conforme a
topologia e a cobertura da rede. Por ultimo, foram definidas as técnicas de trilateracdo e
fingerprinting. Portanto, esta Secdo ofereceu as bases necessarias para o leitor acompanhar
o restante do texto, onde o objetivo é aplicar algoritmos de aprendizado de maquina no

contexto da localizacdo de usudrios em redes sem fio.
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Cliente 6 De Localizagdo

Banco de
Correlagdo

Figura 3.3 - Diagrama simplificado de um sistema de localizacdo baseado em fingerprinting (Adaptado
de [21]).

3.2 Conceitos basicos de aprendizado de maquina

Nos ultimos anos, a utilizacao de dispositivos méveis trouxe mudancas significativas
para a vida da populacdo em geral, nas quais vdrias atividades passaram a ser realizadas
por meio desses aparelhos. Nesse contexto, devido aos registros digitais dessas atividades,
tivemos um aumento consideravel na geracdo e armazenamento de dados, que combinado
com o avango da capacidade computacional dos dispositivos estdo criando um ambiente
propicio para a aplicacdo de técnicas de aprendizado de maquina. Assim, varias aplicagoes
que utilizam aprendizado de méquina passaram a fazer parte do nosso cotidiano, dentre
as quais podemos citar buscadores de Internet, detectores de fraudes, algoritmos de
reconhecimento facial etc. Entretanto, apesar dessas recentes aplicacdes, o aprendizado
de maquina ja estd presentes em nossas vidas ha décadas, em atividades especializadas, tais
como jogos e reconhecimento éptico de caracteres (OCR, optical character recognition)[23].
Assim, temos uma definicdo dada por Arthur Samuel em 1959 [24], na qual aprendizado
de maquina é apresentado como uma drea de estudo que d4 ao computador a habilidade
de aprender uma atividade, mesmo sem ter sido explicitamente programado para tal.

De uma maneira mais formal, aprendizado de médquina pode ser definido como "o
estudo de algoritmos que melhoram a performance P de uma tarefa T com experiéncia E”
[25]. Por exemplo, em um programa de computador que aprende a jogar damas, a tarefa
T € jogar damas, a performance P é a porcentagem de jogos ganhos contra oponentes,
e a experiéncia E é a experiéncia adquirida em jogar contra ele mesmo. Madquinas de
aprendizado constroem modelos matematicos baseados em dados de amostra para fazer
previsdes sem a necessidade de instrucdes especificas. Os componentes bdsicos para a
aplicacdo de um algoritmo de aprendizado de mdquina a um determinado problema sao: i)
o conjunto de dados, o qual possibilitard o treinamento do algoritmo; ii) a possibilidade de

mapeamento aproximado por uma funcéo hipdtese, ou seja, temos que ter um padrdo nos
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dados; iii) ndo existir solucdo analitica para o problema em questdo, ou seja, ndo ter como
deduzir uma solugdo matemadtica exata [26].

Antes de entrarmos em mais detalhes sobre aprendizado de maquina, se faz necessario
algumas defini¢des basicas. O conjunto de dados de amostras utilizado para fazer a maquina
aprender é chamado de conjunto de treinamento e ele tem um impacto bastante relevante no
desempenho final da maquina de aprendizado. O conjunto de dados utilizado para verificar
o desempenho do algoritmo é chamado de conjunto de testes. Alguns algoritmos utilizam
ainda um conjunto de validacdo, o qual é empregado para alguns ajustes (tuning) antes da
verificacdo do desempenho por meio do conjunto de teste.

Para todos os conjuntos de dados (treino, validacdo e teste), temos os atributos
(features) que sdo utilizados pelo algoritmo para predicdo e treinamento. Supondo que
o conjunto de dados se encontra em uma forma tabulada, os atributos seriam equivalentes
as colunas da tabela. As linhas dessa tabela sdo chamadas de instancias (instances) ou
amostras (samples). Além dessas definices, temos ainda o rétulo (target), que é o valor
que desejamos prever. Por exemplo, em um conjunto de dados relativos a clientes de um
determinado setor, a renda mensal e a idade sdo considerados atributos, enquanto que cada
cliente pode ser visto como uma instancia. Nesse contexto, o target poderia ser um campo
binario indicando se o cliente é um bom ou mal pagador.

No que diz respeito aos métodos de aprendizagem, as mdaquinas de aprendizado
podem ser classificadas em trés tipos principais, quais sejam, Aprendizado Supervisionado,
Aprendizado Nao-Supervisionado e Aprendizado por Reforco [23]. Além desses, temos
ainda os algoritmos evoluciondrios, que sdo mais utilizados na resolucdo de problemas de
otimizacio [27].

No Aprendizado Supervisionado, o algoritmo é treinado com dados histéricos e, a
partir desses, deseja-se prever dados futuros. A base de dados de treinamento contém dados
de entrada (usados na predicdo) e a informacdo do valor a ser predito (rétulo ou target).
Assim, o algoritmo busca achar uma ligacdo entre os dados de entrada e o valor de saida.
Algoritmos de aprendizado supervisionado sdo usados, por exemplo, em reconhecimento
de imagens [28], reconhecimento de fala [29] e predi¢do de temperatura (clima) [30].

No Aprendizado N&do Supervisionado, sdo usados somente dados de entrada no
treinamento e ndo se tem a informacao do valor a ser predito. Isto significa que ndo ha
um rétulo para os dados de treinamento. Nesses casos, o que se procura é um padrdo
existente nas instancias. Algoritmos de aprendizagem ndo-supervisionada sdo usados, por
exemplo, para clusterizacio, com o objetivo de encontrar as varidveis mais importantes para
um problema, assim como para encontrar anomalias em uma base de dados.

No Aprendizado por Reforco, tenta-se achar a melhor forma de alcangar um objetivo e
o algoritmo aprende com o passar das iteracdes. Um exemplo é fazer o algoritmo jogar um
jogo sozinho. O algoritmo vai escolher a¢des que maximizem a pontuacao final do jogo. Se
a escolha das a¢des implicar em um resultado ruim em uma iteracdo, o algoritmo tentara

outras acdes na proxima iterag¢do. Dessa forma, o algoritmo aprenderd as melhores agdes
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que precisa realizar para obter a melhor pontuac¢éo possivel do jogo.

Por fim, nos algoritmos evoluciondrios, o objetivo é encontrar parametros em um
espaco de busca de modo a minimizar ou maximizar uma fung¢éo objetiva definida. Dentre
os algoritmos evoluciondrios, destacamos os algoritmos genéticos (GA, genetic algorithms)
[31] e otimizacdo por enxame de particulas (PSO, particle swarm optimization) [32].

Quando se trata de aprendizado de méaquina, temos um grande numero de algoritmos
que podem ser utilizados. Como exemplos de algoritmos de aprendizado supervisionado,
podemos citar o k-NN, a maquina de vetor de suporte, o MLP (multi-layer perceptron) [33]
e as arvores de decisdo [34]. Para algoritmos de aprendizado ndo supervisionado temos,
por exemplo, o algoritmo k-means [35], o SOM (self-organized maps) [36], o autoencoders
[37] e 0o DBSCAN (density-based spatial clustering of applications with noise) [38]. Por fim,
como exemplos de algoritmos de aprendizado por reforco, temos o Q-learning [39], o SARSA
(state-action-reward-state-action) [40] e o Deep Q-learning [41]. A escolha de qual algoritmo
utilizar dependera do problema a ser solucionado. Embora muitos dos algoritmos citados
possam ser usados para tentar solucionar o problema de localizacdo [42, 43, 44, 45, 46],
dois deles se destacam: os algoritmos k-NN e a mdquina de vetor de suporte. Eles tém
apresentado um excelente desempenho nas solucées indoor e outdoor. Assim, devido A

forte utilizacdo em recentes pesquisas, iremos detalhar o funcionamento de ambos.

3.2.1 k-NN, k-nearest neighbors

O algoritmo k-NN é um classificador que pertence a familia dos algoritmos baseados
em instancias [47]. Nesse tipo de algoritmo, as instancias de treinamento sdo armazenadas
e a predicdo de uma nova instancia é realizada usando as k instancias mais préximas no
conjunto de treinamento. Essa estratégia usa um abordagem diferente quando comparada
com outros métodos, tais como as redes neurais, na qual se constréi uma fungéo hipotese
baseada nas amostras de treinamento. Assim, no algoritmo k-NN, a generalizacdo s é
realizada quando uma nova instancia é predita.

O algoritmo k-NN pode ser utilizado tanto em problemas de classificagdo como de
regressdo e funciona da forma como segue [25]: Dada uma instancia de teste X;, o
primeiro passo é encontrar k instancias mais proximas de X;, denominados de vizinhos
de X;. Supondo que cada instancia seja descrita por um vetor de atributos m-dimensional
X = [X;1,X;5,...,X;n], a distdncia entre duas instancias X; e X;, denotada por d(X;,X;), é

definida por

d(X, X)) = | D (X —X;,)2. (3.1)
r=1

Vale salientar que diferentes métricas podem ser utilizadas para calcular a distancia
entre as amostras. Na Equacdo (3.1), a distancia Euclidiana é utilizada, a qual é uma das
mais empregadas na aplicacdo do algoritmo k-NN [48]. Nos problemas de classificacdo,
apds o calculo dos k vizinhos de X; por meio de (3.1), a classe (tipo) atribuida ao rétulo

serd a mais comum entre os vizinhos. J4 nos problemas de regressdo, o valor predito para
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X; é dado pela média dos valores de seus k vizinhos, tal que

k

fx) < ¥ (3.2)
em que X; é uma instancia de treino, enquanto f(X;) é o rétulo para X;. Por ultimo, vale
ressaltar que o algoritmo k-NN ndo é uma boa escolha para grandes volumes de dados,
uma vez que o custo computacional da busca de vizinhos pode ser alto. Por outro lado,
uma grande vantagem do k-NN é que praticamente ndo ha custo com o treinamento e
o algoritmo é capaz de aprender problemas complexos por aproximacdo utilizando uma

estratégia simples.

3.2.2 Maquina de vetor de suporte

A maquina de vetor de suporte (SVM, support vector machine) foi introduzido por
Vapnik em 1995 [49]. A técnica SVM pode resolver tanto problemas linearmente separaveis
como nao-linearmente separaveis. No contexto da classificacdo, o objetivo é encontrar um
hiperplano que separa o maximo possivel os dados de classes distintas. A distancia entre
este hiperplano e a instancia mais préxima de cada classe é chamada margem. A margem
determina quao bem as classes podem ser separadas. Na Figura 3.4, € mostrado o hiperplano
otimo e suas margens. As instancias que se encontram sobre as retas que delimitam as
margens sdo chamadas de vetores de suporte.

Figura 3.4 - O hiperplano 6timo é o que separa os dados de classes diferentes com a maior margem
possivel. Adaptado de [49].

Para lidar com problemas ndo linearmente separdveis, a SVM mapeia o conjunto de
dados nado linear em um espaco n-dimensional em que os dados podem ser linearmente
separaveis. Esse mapeamento é feito por meio das func¢oes de kernel. O espago de mais alta
dimensionalidade é chamado de espaco de caracteristicas e nele é onde serdo mapeados os
dados do conjunto de entrada por meio de uma funcdo . Assim, um novo conjunto de

treinamento, linearmente separavel, é obtido.
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Por ultimo, vale ressaltar que a SVM foi aplicada inicialmente no contexto dos
problemas de classificagdo. Entretanto, também pode ser utilizada em problemas de
regressdo. Nesse caso, recebe o nome de regressdo por vetor de suporte (SVR, support
vector regression) [49].

Assim supondo um problema de regressdo, no qual o conjunto de treinamento (ou
treino) seja D = {(x;,y;) € R" xR,i =1,2,...,¢} com £ pares (X;, Y1), (X3, ¥2),-- -, (X, ¥¢),
em que x; € R" é um vetor n-dimensional que representa as entradas, y; € R, uma varidvel
real continua que representa a saida e £, o nimero de amostras no conjunto de treinamento.
Em problemas de regressdo, busca-se uma funcdo que gera a saida y; a partir das entradas
X;.

Inicialmente, consideraremos o caso da regressao linear. Assim, temos h(x;,w) como

a funcao estimada entre a saida e a entrada, ou seja, é o hiperplano linear dado por

h(x;,w)=(w,x;)+ b, (3.3)

7

em que w € R" é o vetor normal ao hiperplano, b € R é o bias (valor escalar), (-,-) é o

operador de produto interno e ()" é o operador de transposicao.

No caso da SVR, ha diferentes algoritmos que podem ser utilizados, tais como &-svr
[49], v-svr [50] e e-bsvr [51]. Em geral, o algoritmo mais utilizado é e-svr, o qual tem
como objetivo encontrar uma fun¢do com um desvio minimo de ¢ da saida y; para todas as
instancias do conjunto de treino. Assim, esse serd o algoritmo descrito neste trabalho. Por
questoes de simplicidade, o algoritmo e-svr serd denominado apenas de algoritmo svr deste
ponto em diante.

Assim, faremos uso da funcao linear de perda de Vapnik com zona de insensitividade

g, a qual é definida como [49]

0 ,selel<e
E(e)=le], = | — & sel néo (3.4)

na qual e; = y; — h(x;,w). A fungéo linear de perda de Vapnik E(e;) pode ser vista na

Figura. 3.5(a), onde a zona de insensitividade ¢ é destacada. Assim, a perda é nula (zero)
se a diferenca entre o valor real e o valor predito for menor que &.

A solucdo do problema é encontrar uma funcéo linear que estime os pares (x;, y;) com
precisdo €. Ou seja, temo que encontrar um vetor w que minimize o erro, o que implica na

resolucdo do problema de otimizacdo dado por

1,
g}kaIIWII , (3.5)

restrito a |e;| < e [52].

Para evitar grandes variacbes em w, pode-se penalizar grandes residuos. Com esse
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objetivo, um termo de penalidade é incluindo em (3.5), tal que

min (3.6)

em que C é o parametro de custo que determina a relacdo entre o limite da soma dos erros

maiores que ¢ e a variacdo permitida entre os coeficientes do vetor w, também chamada de
flatness. A funcdo E(e;) define um tubo de espessura ¢, conforme ilustrado na Figura 3.5(b),
em que ¢ é o raio do tubo. A restricdo |e;| < ¢, i.e., y; + € = h(x;,w) = y; — ¢ é a condigdo
para o valor predito estar dentro do tubo de espessura ¢.

zona de insensitividade € tubo de espessura

(2
y—£&

-£ 0 +¢&€ e X

Figura 3.5 — (a) Funcéo de perda linear de Vapnik com zona de insensitividade ¢ versus e. (b) Tubo de
espessura ¢ definido a partir de E(e).

O problema de otimizacdo dado em (3.6) pode ser relaxado por meio da introducao
de variaveis de folga (slack variables), denotadas por & e £, as quais permitem lidar com
pontos fora do tubo de espessura ¢. Para os pontos acima do tubo, temos que £ >0 e é =0,
enquanto para os pontos abaixo do tubo, £ =0 e £ > 0. Por dltimo, quando os pontos estao
dentro do tubo, faz-se £ = é =0.

Dadas as variaveis £ e &, podemos reformular o problema de otimizacdo como

4
. 1 2 £
min| 5wl +C | 26+ &) (3.7)

com as restricoes
le/=¢e+¢&
|ei| =&+ g s
€,6=20
o qual pode ser resolvido usando multiplicadores de Lagrange, como pode ser visto em

[52]. Depois de calculados os vetores dos multiplicadores de Lagrange a e a*, o melhor
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hiperplano para regressao é dado por

i
h(x;,w) :Z(a—a*) (xj,xl->+ b. (3.8)

j=1

No caso da regressdo néo linear, a ideia basica é mapear os vetores de entrada x; € R" para
vetores ®(x;) de um espaco dimensional maior I, sendo & a representacdo do mapeamento.
Depois da transformacdo, um problema ndo linear em R" se torna um problema linear em
[. Com isso, o problema de otimizacdo pode ser reformulado como a maximizacdo dos

Lagrangianos utilizando a matriz de Hessian [53] e a solugdo € entdo dada por

{
h(x, w) = > (a—a*)(@(x)),2(x)) +b . (3.9)

j=1

Nota-se que o somatdério nao utiliza todos as amostras do conjunto de treino, mas s6 aquelas
que tém Lagrangiano diferente de zero. Essas instancias sdo chamadas de vetores de suporte.

O problema de otimizacdo, representado por (3.9), envolve o cdlculo de produtos
internos entre vetores no novo espa¢o dimensional I. Portanto, se I for um espaco de alta
dimensao, o cdlculo de ¢ pode se tornar invidvel. Logo, a solugédo é recorrer ao truque do
kernel para fazer a regressao sem a necessidade de calcular o mapeamento ® de todos os
vetores de entrada x; para o espaco I [54]. O kernel é uma func¢édo que se aplica a dois
vetores X; e X; no espaco de entrada X e retorna o produto interno desses vetores no espaco
I[55],1i.e.,

K(x;,%;) = (®(x), 8(x;)) - (3.10)

Para garantir a convexidade do problema de otimizacdo dado por (3.9) e assegurar
que € possivel calcular o produto interno <<I>(x,-),<I>(xj)>, s6 podem ser usadas as funcoes
de kernel que satisfacam a condicdo de Mercer [49]. Dentre os kernels utilizados para
regressdo, destacam-se os de rbf e o polinomial [56]. Neste trabalho, foram testados os
kernels polinomial, rbf Laplaciano e rbf Gaussiano. As expressoes relacionadas a cada kernel
estdo indicadas na Tabela 3.1.

Tabela 3.1 - Tipos de kernels considerados no algoritmo SVR.

Kernel Expressao Parametros

Polinomial  K(x;,x;)=(p (xi,xj> + C)z B,c,z

2
Gaussiano  K(x;,X;) = exp (_ ”XiZ_UXZjH ) o
i LX) = _ =]l
Laplaciano  K(x;,X;) = exp = o

Para o kernel polinomial, temos os parametros z, que é grau do polinémio, 3, que

define a escala, e ¢ que especifica o deslocamento (offset) [48]. Adicionalmente, para os
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kernels do tipo rbf, temos o pardmetro o, o qual pode ser usado para o controle da escala
[48].

3.3 Aprendizado de maquina aplicado a técnicas de

localizacao

Definidas as técnicas basicas de localizacdo e alguns algoritmos de aprendizado de
maquina supervisionados, iremos abordar mais detalhadamente a implementacdo de um
método de localizacdo baseado em fingerprinting usando SVR. Para efeitos de comparacéo,
a mesma técnica fingerprinting foi implementada com os modelos cldssicos de propagacao
COST-231 e ECC-33. Uma implementacao pratica de trilateracdo utilizando aprendizado de
maquina pode ser encontrada em [57], no entanto néo serd objeto de estudo deste capitulo.

Devido a auséncia de linha de visada (NLoS, non-line-of-sight) no enlace ERB-EM e a
propagacdo multipercurso, a técnica fingerprinting costuma apresentar resultados nédo tdo
eficientes. Com o objetivo de obter uma melhor acuracia, uma abordagem interessante é
modelar o problema de geolocalizacdo de terminais na rede celular como um problema
de aprendizado de maquina. Por exemplo, em [58] é proposto um algoritmo baseado em
SVR que usa o ToA da onda em seis ERBs para estimar a posicdo do terminal. Nesta Secao,
propomos um método baseado em algoritmos SVR que usam os RSSIs medidos em trés ERBs
para estimar a posicdo da EM.

No método de localizagdo proposto, foi aplicada uma técnica de predicdo de sinais de
RF com SVR descrita em [59]. Uma vez que o kernel Laplaciano teve o melhor desempenho
na predicdo da perda de espaco livre, ele foi adotado para os algoritmos SVR utilizados
no método de localizacdo. A técnica de localizacdo proposta tem como objetivo estimar a
posicdo (latitude e longitude) da EM com os RSSIs medidos a partir de trés ERBs. A técnica

proposta pode ser descrita em seis passos, os quais sdo listados no Algoritmo 1.

Algorithm 1 Detalhamento do método de localizacdo proposto

. Coletar as medi¢oes de RSSI do scanner de RE

. Treinar os algoritmos SVR para predicdo da perda de espago livre (um para cada ERB).
. Gerar os mapas de cobertura (um para cada ERB).

. Coletar medi¢des de RSSI da EM procurada nas trés ERBs.

. Aplicar o filtro de reducao do espaco de busca.

. Encontrar o ponto mais préximo no mapa de cobertura.

U1 WDN -

No primeiro passo, foram consideradas medi¢des de nivel de sinal com portadora
na faixa de frequéncia de 1,8 GHz. As medi¢des foram realizadas em um ambiente
urbano na cidade de Recife-PE, considerando uma rede GSM (Global System for Mobile
Communications). O nivel de intensidade de sinal foi medido com o equipamento
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NEMO FS R1! utilizado como um scanner para a rede GSM. No total, foram realizadas
2.547 medigbes e coletados os mesmos dados especificados em [59]. Dessas medicoes,
2.447 foram usadas para treinar e validar o algoritmo SVR e 100 serviram como conjunto
de teste para verificar o desempenho do método de localizacdo. Na Figura 3.6, temos
as medicOes que foram usadas para testar a precisdo do algoritmo SVR (em vermelho) e
as medicGes que foram usadas para treina-lo e valida-lo (em verde). As localizacoes das
trés ERBs, denotadas por ERB-1, ERB-2 e ERB-3, também sdo indicadas na Figura 3.6.
Complementando as informacoes sobre as ERBs, a altura e a elevacdo do terreno para as

trés ERBs sdo apresentadas na Tabela 3.2. A EIRP e o angulo de abertura horizontal da
antena para todas as ERBs sdo, respectivamente, 70,1 dBm e 63°.
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Figura 3.6 — Ambiente urbano na cidade de Recife-PE com a indicagdo das medicoes de teste, de treino
e a localizacdo das ERBs.

Tabela 3.2 — Dados relativos a configuragdo das ERBs no momento das medigGes.

Estacdo Rddio Base Elevacdo Altura

ERB-1 8 m 41 m
ERB-2 6m 53 m
ERB-3 8m 40 m

Apés a coleta dos dados, o segundo passo do método consiste em treinar os algoritmos
SVR-Laplaciano para a predicdo da PL. Para tanto, a partir dos dados coletados foram
extraidos os atributos especificados em [59], e foram gerados trés conjuntos de treino,
um para cada ERB. Os conjuntos possuem 0s mesmos atributos (features). No processo de
treinamento dos algoritmos SVR, foi utilizada a técnica 10-fold cross-validation, ja descrita
anteriormente, para a escolha da melhor configuracdo de parametros (best fit). Os valores

dos parametros C e ¢ testados foram os mesmos definidos na predi¢do de sinais com a SVR,

INEMO FS R1 ¢ um receptor modular de escaneamento digital de intensidade de sinais de RE
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ou seja, foram testados 18 valores (poténcias de 2) de C no intervalo de 272 a 2!, para
cada valor de ¢ (¢ = 0,1 e ¢ = 0,05). Os melhores valores para C e ¢ estdo listados na
Tabela 3.3, bem como os respectivos (i (RMSE) e u,, (desvio padrdo). O valor do parametro
o de cada algoritmo SVR-Laplaciano, foi calculado como o ponto médio entre 0 10° e 0 90°
percentis de ||xl- —x]-”2 [54, 60]. Os valores de o estimados para os algoritmos das ERB-1,
ERB-2 e ERB-3 também estdo listados na Tabela 3.3. Note que temos um valor de o para
cada algoritmo, uma vez que cada um deles tem seu préprio conjunto de treinamento. Vale

ressaltar, que o kernel Laplaciano foi selecionado devido ao seu melhor desempenho nesse
tipo de problema, como pode ser em [61].

Tabela 3.3 — Resultados da fase de treinamento de cada algoritmo SVR-Laplaciano usando técnica 10-fold
cross-validation.

ERB o C ¢ @a(dB) w,(dB)
ERB-1 0,258 16 0,1 3,66 0,271
ERB-2 0,207 32 0,1 3,83 0,240
ERB-3 0,215 16 0,1 3,49 0,259

O préximo passo do algoritmo SVR é gerar o mapa de cobertura. Para isso, uma area
de localizacdo deve ser definida. Neste trabalho, serd considerada uma area de localizacao

de 1,38 km x 1,38 km com um grid de resolucdo de 20 m x 20 m. A drea de localizacdo e
o grid podem ser vistos na Figura 3.7.
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Figura 3.7 — area de localizagdo de 1,38 km x 1,38 km com um grid de resolucdo de 20 m x 20 m.

Estabelecida a drea de localizagdo como um grid de q posi¢coes, o mapa de cobertura

¢ definido como um conjunto S = {(p;,s;) € R* xR3,i = 1,2,...,q} com q pares, em que
p;, = [pfl), pgz)] é o vetor posi¢do para o i-ésimo quadrado de 4rea 20 m? no grid, sendo
pgl) a longitude e pl@), a latitude do centro deste i-ésimo quadrado. Além disso, o vetor

S; = [551),352),353)] representa as predicoes de RSSI feitas pelo algoritmo SVR para a ERB-1,
ERB-2 e ERB-3, respectivamente. Assim, o algoritmo SVR treinado de cada ERB ¢é utilizado
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para fazer a predicdo de RSSI para todas as posi¢des do vetor p; do grid de localizacao.
Na Figura 3.8, podemos ver o mapa de cobertura para cada ERB, os quais foram gerados
a partir das predi¢cdes dos algoritmos SVR. Na Figura 3.8, as cores indicam o nivel de RSSI

em cada posicdo do mapa.

|RSSI Predito (dBm) ® >=-55# (-65,-55]8 (~75,-65]* (~85,-75]m <-85|

ERB-1 ERB-2 ERB-3

ERB—3 ‘ ERB 2

(a) (b) (c)
Figura 3.8 — Mapas de cobertura obtidos a partir das predi¢gdes de RSSI dos algoritmos SVR para cada
ERB:(a) ERB-1. (b) ERB-2. (c¢) ERB-3.

Dado o mapa de cobertura S, os dois ultimos passos do método de localizacdo
concentram-se em estimar a posicdo da EM no grid de localizacdo. Considerando m =
[m,, m,, my], um vetor que representa o RSSI medido para terminal mével procurado, em
que m,, m, e my sdo as medicdes para as ERB-1, ERB-2 e ERB-3, respectivamente. Ademais,
considerando a = [a;, a,,a;] como sendo os TAs (Time Advanced) medidos em relacio ao
movel procurado. Assim, depois de realizar as medi¢oes em relacdo ao mével procurando, o
proximo passo € a aplicacdo do filtro de drea. O filtro tenta selecionar pontos que tenham os
mesmos TAs medidos do mével procurando (vetor a). Primeiramente ele tenta selecionar
os pontos que tém todos os TAs iguais aos TAs medidos (total correspondéncia), caso ndo
haja pontos com esses valores, ele tenta selecionar pontos que tém pelo menos dois dos TAs
medidos. Se ainda ndo ha pontos com essas caracteristicas, ele tenta selecionar pontos com
ao menos um dos TA medidos. Por ultimo, caso nenhum ponto tenha sido selecionado, é
retornado todo o grid de localizacdo como drea de busca Si.

Dado a 4rea reduzida de busca (Sg), o ultimo passo é estimar o a posicdo utilizado
a distancia Euclidiana como func@o de similaridade. Assim, definindo d; como sendo a
distancia Euclidiana entre m e s; para i-ésima posicao no grid de localizacdo, dlf pode ser

€Xpresso por

d = \/(SEU —my)2+ (s —my)2 + (& —my)2, (3.11)

i=1,2,...,q. Finalmente, a melhor posicio estimada p; é aquela cujo vetor s; tem a menor
distdncia Euclidiana d; em relagdo ao vetor m.

Para efeitos de comparacdo, foram considerados dois métodos de localizacdo
Fingerprint que utilizam métodos cldssicos para predicdo de sinais. Por razdes de
simplicidade, adotaremos a denominagdo FP-COST-231 para o método de localizacdo que
utiliza a técnica de Fingerprint com o modelo COST-231, e FP-ECC-33 para o método de

localizacdo que utiliza a técnica de Fingerprint com o modelo ECC-33. Em ambos os
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métodos, os modelos de propagacdo foram utilizados para estimar a perda em espago livre
e com isso possibilitar a construcdo do mapa de cobertura.

Os desempenhos dos trés métodos de localizacdo (FP-COST-231, FP-ECC-33 e o
método proposto) sdo avaliados utilizando simula¢do em computadores. Todos os métodos
foram implementada por meio da linguagem R [62] em conjunto com os pacotes kernlab
[54] e caret [63].

Para comparamos o desempenho dos métodos, utilizaremos o erro de localizacao, 7,
que ¢é a distancia (em m) entre a posicdo real da EM e a posicdo estimada pelo método
de localizacdo. Na Tabela 3.4, temos uma andlise estatistica do erro de localizacdo das
predicoes de cada método. O erro médio de localizacdo é representado por 1), seu desvio
padrdo por 7, e 0s erros maximo e minimo por 1,,., € Nmin, respectivamente. Ainda na
Tabela 3.4, podemos verificar que o método de localizagdo proposto apresenta um erro
médio de 1 = 54.4 m, enquanto os métodos FP-COST-231 e FP-ECC-33 apresentam 7 =
211,9 m e ) = 226, 3 m, respectivamente.

Para uma melhor comparacdo, mapas de predicdo de localizacdo podem ser
construidos, como ilustrado na Figura 3.9. Todos os mapas possuem duas camadas: a
primeira com os pontos de teste coletados em campo; e a segunda, com os pontos preditos
pelo método de localizacdo. Em todos os mapas, os pontos em cor cinza representam as
posicdes relativas as medicoes de campo, ou seja, sdo as posicoes reais da EM.

| Pontos @ FP.COST-231 @ FP.ECC-33 O Posi¢do Real @ FP.SVR |

Predicses COST—231 [ Predices ECC-33 I PredicGes SVR |

(a) (b) ()

Figura 3.9 — Mapas de predi¢do para cada método de localizacdo:(a) Fingerprinting com COST-231. (b)
Fingerprinting com ECC-33. (c) Método proposto (algoritmo SVR).

A Fig. 3.9(a) mostra a distribuicdo de pontos predita pelo método FP-COST-231, a
qual é representada pelos pontos verdes. Na Fig. 3.9(b), temos as posi¢des estimadas pelo

método FP-ECC-33, as quais sdo representadas pelos pontos azuis. A Fig. 3.9(c) indica as

Tabela 3.4 — Andlise estatistica do erro médio da posicdo para os trés métodos de localizacdo.

Método Loc. ] Ny N max Nmin
SVR 540m 56,8m 383,3m 0,4m
FP-COST-231 2119m 142,1m 8079m 16,2m
FP- ECC-33 226,3m 150,1m 8079m 16,2m
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posicoes estimadas obtidas pelo método de localizacdo proposto (abordagem baseada em
algoritmo SVR). Comparando as figuras, podemos verificar que, quando a SVR ¢é utilizada,
h& uma maior convergéncia entres os pontos estimados e os pontos cinzas. Dessa forma, o
método baseado em SVR se mostra mais preciso que os métodos que utilizam o COST-231
e EC-33.

Outra maneira de se comparar os métodos de localizacdo implementados neste
trabalho é por meio de histogramas. Na Figura 3.10, temos um histograma para cada
método de localizacéo, no qual o eixo das abscissas representa o erro de localizacdo 1 e o
eixo das ordenadas, a quantidade de amostras que tiveram o mesmo 7). Analisando os trés
histogramas, é possivel verificar que o método de localizacdo proposto é o melhor deles,
pois as amostras estdo concentradas no inicio do histograma, isto €, os erros de localiza¢do
estdo contidos no intervalo de 0 a 250 m. Para os outros dois métodos, podemos verificar

que os erros estao mais distribuidos no intervalo de 0 a 400 m.
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Figura 3.10 - Histograma do erro médio de localizacdo (em m) para o conjunto de 100 amostras de
teste: (a) Abordagem baseada em algoritmos SVR. (b) Fingerprinting com ECC-33. (c) Fingerprinting
com COST-231.

3.4 Oportunidades e desafios

Devido a sua versatilidade, sdo inimeras as possibilidades para aplicacdo de técnicas

de aprendizado de mdaquina no que concerne a localizacdo de terminais mdveis em
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ambientes sem fio. O espectro de desafios contempla desde avangos na engenharia de
caracteristicas (feature engineering), considerando diferentes medicoes que podem incluir
o ToA, TDoA, RSSI, AoA, informacdo de estado do canal (CSI, channel state information),
além da utilizacdo de novas tecnologias como WLAN, UWB (ultra-wide bandwidth) e BLE
(Bluetooth Low Energy).

Este abrangente leque de opc¢oes influencia diretamente na escolha e nas técnicas de
refinamento que podem ser aplicadas aos diversos algoritmos existentes. Esses fatores sdo
determinantes e decisivos para obter um bom equilibrio entre a acuracia obtida pelo servico
de localizacdo e seu desempenho, esse tltimo normalmente avaliado sob a perspectiva da
complexidade computacional.

Com base nas oportunidades que surgem diante dessa nova fronteira, pretendemos
nessa Secdo destacar algumas vertentes de pesquisa cujos resultados destacam-se por
apresentar abordagens alternativas em relacdo aquelas discutidas até agora.

A simplicidade e a efetividade do k-NN no contexto das técnicas de localizacdo
trouxeram notoriedade para esse algoritmo, incentivando diversas pesquisas focadas em
propor novas melhorias ou adaptacoes ao k-NN com a finalidade de aperfeicoar sua
eficacia, melhorando assim a acurdcia dos sistemas de localizacdo [64]. Em [65], os
autores propuseram uma variante do k-NN batizada de FS/k-NN (feature scaling/k-NN). Nas
aplicacoes tradicionais do k-NN, o valor absoluto obtido ao subtrair dois RSSIs distintos nao
carrega consigo informacao a respeito do RSSI utilizado nas parcelas da subtra¢do. Devido a
essa caracteristica, dois valores absolutos idénticos, obtidos da subtracdo de RSSIs distintos,
ndo representam necessariamente a mesma distancia. Baseando-se nessa observacéao, os
autores criaram um mecanismo que atribui pesos aos componentes do k-NN, levando em
consideracdo os valores de RSSI.

Outro algoritmo que se destaca devido a sua efetividade é o SVM. Assim como ocorre
para o k-NN, existem pesquisas que propdem melhorias promovidas pela realizacdo de
adaptacbes no SVM. O trabalho em [66] mostra o emprego de uma variante do SVM
conhecida como OISVM (online independent SVM). A grande vantagem dessa variante
é a capacidade da etapa de aprendizado ser realizada de forma online, ou seja, o
algoritmo continua refinando seu processo de aprendizado a medida que novos dados
sdo fornecidos. Essa caracteristica do OISVM implicou na reducdo da complexidade
computacional associada is etapas de treino e predicdo do algoritmo, além de melhor sua
acuracia.

Seguindo na linha de variantes do SVM, o RVM (relevance vector machine) vem sendo
utilizado com sucesso para diferenciar sinais com e sem linha de visada, respectivamente.
A grande vantagem do RVM em comparacio ao SVM € a quantidade de vetores utilizados.
O fato do RVM utilizar menos vetores permite um desempenho superior ao SVM em termos
de complexidade computacional. Os autores em [67] desenvolveram um método para
classificar sinais com e sem linha de visada, utilizando ToA com a tecnologia UWB.

Outras oportunidades de melhoria na acurdcia e na reducdo de complexidade
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computacional dos servicos de localizacdo tem sido discutidas recentemente. Em [68],
os autores mostram que a escolha da geometria do grid na criacdo dos mapas de radio
pode influenciar na acurdcia e causar uma diminui¢do substancial na complexidade
computacional. Esse resultado potencializa eventuais melhorias nos servicos de localizagdo
ao incluir a geometria do espago como ponto de chave, potencializando os ganhos ja obtidos
através do emprego de algoritmos de aprendizado de mdquina.

Para finalizar, é importante destacar que a utilizacdo de algoritmos de aprendizado
de mdaquina para a resolucdo de problemas cada vez mais complexos, onde uma grande
quantidade de dados estd envolvida, jA é uma tendéncia. Varias plataformas de Big
Data podem ser utilizadas para permitir a escalabilidade de algoritmos de aprendizado
de maquina. Dentre as principais, destacam-se a Apache Spark [69] e H20 [70]. Essas
plataformas permitem a utilizacdo de redes de aprendizado profundo (deep learning) para
a resolucdo de problemas que possuem uma imensa quantidade de dados [71]. No
contexto de localizagcdo e por meio dessas ferramentas, é possivel construir um modelo
preditivo usando dados recolhidos de toda uma rede celular por exemplo, técnicas de
crowdsourcing [72] podem ser utilizadas para a geracdo da base de dados. Esse tipo de
estratégia permitiria a geracdo de um modelo preditivo com maior poder de generalizagdo
e que poderia ser utilizado em qualquer ponto da rede celular.

Como pode ser visto, as oportunidades e desafios na drea de localizacdo de terminais
moveis em ambientes sem fio sdo inimeras. A aplicabilidade de técnicas de aprendizado
de mdquina tem evoluido constantemente. Sendo assim, a pretensdo desta Secdo nao é
consolidar uma lista definitiva, mas sim motivar e inspirar o leitor acerca da pluralidade
de uma area relativamente recente, onde os problemas, desafios e consequentes solugdes

ainda estdo para serem descobertos e explorados em sua maxima plenitude.
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CAPITULO

4

Fundamentals and Techniques for
the Localization of a Sensor and the
Mapping of an Environment Using
Videos

Allan Freitas da Silva (UFRJ), Eduardo Antonio Barros da Silva (UFRJ) and Sergio
Lima Netto (UFRJ)

Simultaneous Localization and Mapping (SLAM) is an active research area which is
fundamental for several applications, such as robotics, autonomous driving and virtual
reality. It allows a system to construct a map of an environment while keeping track of
the sensor recording it. Among such methods, the ones that employ only visual sensors
(usually referred to as visual SLAM or VSLAM) stand out due to the simplicity in the
configuration. However, it comes at a cost of a higher technical difficulty, in special for
the case of monocular devices.

This chapter investigates the use of monocular visual SLAM methods with focus on the
Lie algebra formalism proposed by [1]. In order to introduce this algorithm to the reader,
we present a description of projective geometry, which is used in most SLAM algorithms
that rely only on visual content. We also present concepts of Lie algebra that are necessary
for the understanding of the algorithm.

This chapter is organized as follows. In Section 4.2, we present the discussion
about camera models and projective geometry, while Section 4.3 lectures about abstract
algebra. Section 4.4 details the SLAM algorithm of interest and two algorithms used
for comparison. In Section 4.6, some tests are performed using the three algorithms for
a traditional database, and in Section 4.7 we discuss some of the current difficulties in
the SLAM computation and present a challenging database. Section 4.8 summarizes the

contents of this chapter.
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4.1 Related Work

In general, SLAM methods use a camera and different auxiliary information, such as
laser [2] or infrared signals [3]. In [4], for instance, a method developed for low-powered
devices uses a camera mounted in an aerial vehicle and pointed downwards along with a
height sensor and estimates visual maps using a graph-based formulation.

Among such methods, the visual SLAM is composed of approaches that use a camera as
their primary sensor. Davison [5] uses a monocular camera and estimates the camera linear
and angular velocities for each new frame, considering that between each measurement a
random speed variation can occur. The work seen in [6] develops an object-oriented SLAM,
which uses recognition algorithms to identify objects in the environment, which are used as
features that are tracked along the frames.

Some of the most successful visual SLAM algorithms use stereo cameras [ 7], which are
not widely spread. However, approaches using monocular cameras have several drawbacks
since no information regarding the depth of the scene can be directly inferred from the
images. To work around this problem, visual SLAM algorithms with monocular cameras
usually use two main steps [1]: a visual odometry method to estimate camera poses and a
loop closure step that detects if the camera returns to a known position, therefore preventing
errors due to the uncertainty of the scale. The visual odometry step computes the epipolar
geometry between frames, which is usually used to build submaps of the camera trajectory
[8], and the results are refined with a bundle adjustment algorithm [9]. The loop closure
step computes connections between submaps [8] or frames [10, 11] to detect loop closures,
which are used to refine the results by minimizing a cost function.

An open source solution to solve the SLAM problem was proposed in [12]. It uses a
parallel implementation to allow an efficient algorithm. In order to improve the robustness,
the algorithm has an specific thread responsible for continuously optimizing and refining
the results. In [13], the method was extended to the RGB-D and stereo cases.

A different family of methods deals with the image intensity values and estimates
directly the camera poses without relying on intermediary structures such as image features
or a fundamental matrix. One can cite [ 14], that performs a joint optimization of all model
parameters and minimizes a photometric error. In order to achieve real-time detection, the
method uses a set of sparse pixels and applies a sliding window in the frames. This method
was further improved in [15], by also introducing a loop closure detection.

A visual SLAM method that has state-of-the-art results in trajectory estimation of a
monocular calibrated camera has been proposed in [1]. This method develops a new
formalism using notions of Lie algebra [16] with a graph-based optimization to estimate

the trajectory and has shown significant advances for camera trajectory computation.
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4.2 Camera Models and Projective Geometry

In this section, several concepts related to projection of the real world into a camera are
depicted. This subject is of paramount importance to the understanding of the algorithms
to recover the camera trajectory from a video sequence.

If several cameras record the same scene in different positions, there is a relationship
between the positioning of the cameras and the images they create. As can be seen in Fig.
4.1, image points in multiple views that represent the same three-dimensional point define

an intrinsic geometrical property among the cameras.

Figura 4.1 - Intrinsic geometry for two cameras representing the same scene. The three-dimensional
point X is projected in the left image onto the point x and in the right image onto the point x’. The
projection for each image is defined by the image plane and the camera center, C and C’ respectively for
the left and right cameras.

In this example, a three-dimensional point X is projected in the left image onto the
point x, and the projection ray passes through the camera center C. The point X’ is also a
projection of the X on the right image, which passes through the camera center C'. Since
the projection rays are assumed to be straight lines, the knowledge of an image point x in
one image imposes a restriction on the position of the image point x” in the other image.
The next sections define a model for the camera and for the geometry between multiple
views, and show how to explore these geometrical properties to infer information about the

camera positioning based on the image content.

4.2.1 Homogeneous Coordinates

The mathematical definition of the camera projection and the relationship between
images can be simplified if one considers the use of homogeneous coordinates. A point in the
space R? is usually represented by a vector (x, y)”. By extending the vector to include a third

component, for example, (x, y,1)7 it is said that the vector is represented in homogeneous
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coordinates. This representation has the advantage of allowing a simplification of several
operations.

For instance, a line in the space R is the set of points where the relation ax+by+c =0
is valid. Based on this definition, a line can be represented as the vector 1 = (a, b,c)’. In
order to test if the point x = (x, y,1)”, in homogeneous coordinates, belongs to the line 1,

it is necessary and sufficient to compute the internal product between x and 1, that is
x'1=(x,y,1)(a,b,c) =ax+by +c, (4.1)

which is zero if x belongs to the line 1. One should notice that if the vector (x, y, 1) belongs
to the line 1, any vector of the form (kx, ky, k) also belongs to this line, so that the set of
vectors (kx, ky, k)" represent the same point (x, y)”. Since the factor k can be arbitrary, it
is often defined as k = 1.

4.2.2 Camera Model

A simple approach to understand the operation of a camera is the model of a pinhole
camera. It considers that the camera is composed of a box with a tiny aperture and a
projection surface, without any lens in the exterior, and every light ray passes through the
aperture and projects an inverted image onto a surface in the opposite side of the camera.

For convention, to further simplify the mathematics, it is often defined a virtual
projection plane placed in front of the camera. In this paradigm, the projection occurs when
the light ray crosses the projection plane towards the aperture, which is called the camera
center. Considering the camera center as the origin of a coordinate system, the point X in
the three-dimensional space and the equivalent point x in the projected image space, and
considering the projection plane to be perpendicular to the z axis passing through the point

Z = f, the projection of the point X to the point x can be expressed as:

f 000 ); X Xx/z
Xx=PX=10 f 0 0| |=|fY|=|f¥/Z], (4.2)
001 0]|] Z 1

where the matrix P that transforms the point X to the point x is called the camera matrix
and f is the focal length.

In Fig. 4.2, the projection p of the camera center is considered as the origin of a
coordinate system in the image. However, the origin of the coordinate system of an image
is often defined as the top left or down left positions. If one wants to translate the coordinate
system to a different location, the camera center must be compensated in Eq. (4.2), leading

to the following equation:
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Figura 4.2 — Projection onto an image plane performed by a pinhole camera. The point X in the three-
dimensional space is projected to the point x in the image plane through the light ray that crosses the
camera center C.

X
fX/Z +p, f 0 p, O v

x=|fY/Z+p,|=|0 f p, O z (4.3)
1 00 1 0 )

If the coordinate system of the three-dimensional space should also be rotated or
translated, which is the case for instance if there are multiple cameras to be modeled
according to the same reference, the camera model is adapted to include a transformation

that rotates and translates the coordinate system. The camera model becomes:

f 0 p. O
0 f o [® "lx K[R | t|Xx=PX (4.4)
X = = = , .
Py 0 1
00 1 0
with

f 0 p,
0 0 1

The matrix R and the vector t represent, respectively, a rotation and a translation
of the camera with respect to space coordinates, and are called the extrinsic parameters
of the camera. The matrix K is called the calibration matrix and summarizes the intrinsic
parameters of the camera, which are related to the projection of the three-dimensional
points to generate the image points.

It is also possible to derive the expression of the camera center given the camera matrix
P. Consider the points A and C, with C having the property that PC = 0. Any point that

belongs to the line connecting A and C can be generated using the following expression:
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X=2A+(1—-2)C, (4.6)

where A is a variable used to parameterize a point in the line. The projection of the point X

in the image is:

x =PX=APA+(1—A)PC = APA. 4.7)

It should be noted that any point X defined by Eq. (4.6) possesses the same image
point x = APA. One can conclude that this line represents a projection ray, and since there
was no assumption about the point A, the remaining point C such that PC = 0 must be the
camera center.

An even more generic model considers other effects. In CCD cameras, a pixel may
not be square, which happens when the camera has different focal lengths in the horizontal
(f,) and vertical (f,) directions. A camera may also have a shear distortion in the projected
image, exemplified by the factor s, which occurs when the image axes x and y are not
perpendicular. The camera model considering the aforementioned distortions has the

following calibration matrix:

fx S Dy
K=|0 f, p,|- (4.8)
0 0 1

4.2.3 Fundamental Matrix

As seen in Fig. 4.1, given two cameras recording the same scene, any point in the
second camera corresponding to a point in the first camera necessarily must belong to a line
that also contains the projection of the camera center of the first camera. The fundamental
matrix is an object that summarizes the geometric relation between points from the two
views.

The geometric relation between the image points can be explained as follows.
Consider two cameras with known camera matrices P and P/, and an image point x in the
first image that is the projection of the three-dimensional point X. The projection ray that
creates the image point can be defined by two points: the camera center, where PC = 0,
and any point that respects the relation x = PX. According to [17], the second point can
be obtained by computing the pseudoinverse of P, as X* = P*x. The projection ray is a line

defined as the set of points X(A), for a parameter A, such that:

X(A)=X"+ AC. (4.9)

In the second view, the projection of any projection ray such as the one defined in
Eq. (4.9) is called an epipolar line, and it passes through the projection of the two known

points that were used to define it, X* and C. The projection of the camera center is
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represented by e’ and is called the epipole. The image points that define this epipolar line

are:
e =PC, (4.10)

and
x =P'X" =PP'x. 4.11)

Representing the epipolar line as a vector, one can write [18]:

I'=e' xx" =[e],PP"x =Fx, (4.12)

and
F=[e],PP*. (4.13)
where [e’], is an antisymmetric matrix created from the components of e =
(e;,e;,eg)T in order to transform a vectorial product into a scalar product, using the

following map:

[e].=]e 0 —eff. (4.14)

The matrix F is called a fundamental matrix and establishes a relationship between
two views from the same scene: an image point x from the first image defines a projection
ray, and the projection of this line in the second image defines the epipolar line I'. If one
knows the point x from one image and the fundamental matrix, the corresponding point x’
in the second image must belong to the epipolar line 1'. Thus, one can find the following
equation relating the corresponding points x and x’ in the two views:

— /T

0=x"1=x"Fx. (4.15)

4.2.4 Essential Matrix

The essential matrix can be interpreted as a particular case of the fundamental matrix
when the calibration matrix is known. Since a camera matrix is given by the expression
P= K[R | t], one can remove the effect of the calibration matrix, which is equivalent to

using a normalized coordinate system in the image, with:

P=K'P=[R | t], (4.16)

and then
x=K'PX=K'x. (4.17)

Given a pair of normalized cameras, P = [I | O] and P’ = [R | t], the essential
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matrix that represents the relationship between the cameras is given by:

E = [t],R=R[R"t],, (4.18)

which shows that the essential matrix depends only on the relative rotation and translation
between both cameras.
The essential matrix also defines the relation between corresponding normalized

points, similarly to Eq. (4.15):

*TEx = 0. (4.19)

Replacing Eq. (4.17) in Eq. (4.15), one can find a relation between the fundamental

and essential matrices, given the calibration matrices:

E=K"FK. (4.20)

4.2.5 Computation of the Fundamental Matrix

Eq. (4.13) shows how to retrieve the fundamental matrix that relates two images if
the camera matrices are known. However, a common application is the case where only the
images are known, and one wants to infer properties of the positioning of the cameras and
the three-dimensional space. In this situation, the fundamental matrix must be computed
directly from the image information.

Feature detector and descriptor algorithms are tools that can be used to estimate
corresponding points in two images. Algorithms such as the scale-invariant feature
transform (SIFT) [19], the speeded-up robust features (SURF) [20], the binary robust
invariant scalable keypoints (BRISK) [21], or the fast retina keypoint (FREAK) [22] detect
representative points in the images and create, for each point, a feature descriptor, often
based on the local information. These descriptors can be used to estimate corresponding
points between the images, by pairing points with similar descriptors.

The estimation of the fundamental matrix can be made using a set of corresponding
points. Each pair of corresponding points provides an equation on the elements of the
fundamental matrix given by Eq. (4.15). Using a sufficient number of points, one can create
a system of equations to solve for the elements of the fundamental matrix.

Some of the classical algorithms to compute the fundamental matrix are the eight-
point algorithm [23] , the seven-point algorithm [24] and the five-point algorithm [25].
The eight-point algorithm [23] requires at least eight pairs of corresponding points to
compute the eight unknown elements of the matrix (which is of size 3 x 3), assuming that
in homogeneous coordinates the scale can be disregarded. The seven-point algorithm [24]
also includes the restriction that det(F) = 0, therefore only seven points are necessary. The
five-point algorithm [25] is used in the case where the camera calibration is known, and

also includes restrictions on the essential matrix.
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4.2.6 Reconstruction from Two Views

If there is no information about the three-dimensional space and only the images are
known, it is possible to estimate information of the cameras disposition from the image

contents. Combining Eqgs. (4.15) and (4.2), one deduces that:

0 =xTFx = (P'’X)"F(PX) = X" (P'"FP)X, (4.21)

which, in order to be true for any X, implies that P’" FP is skew-symmetric.
A possible pair of camera matrices that defines the fundamental matrix F is the
following:
P=[1] 0] and P=[sF | ¢], (4.22)

[sF | e']TF[I | o]=[F;§;F 8}:{FT(S)TF g] (4.23)

is skew-symmetric if S is also skew-symmetric. In [26] it is proposed that S = [e],..

since

In fact, there is a family of matrices similar to the ones shown in Eq. (4.22) that define
the same fundamental matrix F. They are of the form:

P=[1 ]| 0] e P=[[eLF+tev’ | 2¢], (4.24)

for any vector v and scalar A. This indicates that there is an ambiguity in the reconstruction,
which is further discussed in the subsection 4.2.8.

If the calibration matrices for both cameras are known beforehand, the cameras can
be obtained from the essential matrix in a simpler way. As shown in Eq. (4.18), the
essential matrix is defined by a rotation matrix R and a translation vector t. Using an SVD
decomposition of the essential matrix, it is possible to define a factorization of the form
E = SR. An SVD of the essential matrix is:

1 00
E=U|0 1 0]V, (4.25)
000
Using
0 -1 0 0 10
W=|[1 0 0 and Z=|—-1 0 0}, (4.26)
0 0 O 0 0O
one finds that
S =UzU” =[t], and R=UWV’ or UWTVT, (4.27)

From Eq. (4.27), one can see that there are two possible values for the matrix R, which
is due to a symmetry in the position of the cameras. In addition, with this decomposition, the

matrix S necessarily has a Frobenius norm equal to +/2 [18] and the corresponding vector
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t is unitary, which shows that only a normalized vector can be estimated, unless some clue
about the original scene is known beforehand.

Since the matrix E is also in homogeneous coordinates, it is not possible to infer the
correct of sign of the components, as the scale of the matrix is normalized, therefore a
scale of —1 produces the same matrix. Combining the indefinition of the sign and the
two solutions for the rotation, one concludes that this decomposition defines four possible
candidates for the camera position, which are symmetrical among them, as seen in Fig. 4.3.
In order to distinguish among these four cases, it is often defined that all three-dimensional
points must be facing the cameras. Thus, using a triangulation technique, one can obtain

the solution that provides the largest number of points in front of the cameras.
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Figura 4.3 - Possible solutions for the decomposition of the essential matrix in a pair of cameras. The
point X represents a three-dimensional point that is projected into two cameras with centers A and B. (a)
Point in front of both cameras. (b) Point behind both cameras. (¢) Point in front of camera A and behind

camera B. (d) Point in front of camera B and behind camera A.

In analogy to Eq. (4.24), which shows the pair of cameras when the calibration is

unknown, the pair of cameras obtained using the essential matrix is:

P=[R | At], (4.28)

for a scalar A.
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4.2.7 Triangulation

With a pair of camera matrices P and P’ and the corresponding image points x and
x’, it is possible estimate the position of the three-dimensional point that was projected into
the cameras. Since a point in the image plane and the corresponding camera matrix define
a projection ray, two projection rays can be found. The intersection of those lines indicates
the position of the point X in the space, which is the point where the projections x = PX are

x' = P’X valid. Fig. 4.4 shows an example of the triangulation.

X

C C’

Figura 4.4 - Triangulation of a three-dimensional point without noise in the measurements. The point X
indicates the triangulated point using the projections x and x'.

Assuming that the estimation of the corresponding points has noise, the restriction
defined by Eq. (4.15) may not be satisfied, which potentially leads to an error in the
computation of the camera matrices. Therefore, it may not be possible to find a point X
that is projected onto both images. In this case, one should either introduce some step to
correct the measurements and define a criterion to select points that minimize a pre-defined

error. Fig. 4.5 shows an example of the triangulation when the measurements have noise.

Figura 4.5 — Triangulation of a point with a noisy measurement of the corresponding points. The points
x and X’ represent an approximation of the corresponding points x and x’ for which the projection rays
intersect, and the point X is the resulting triangulation.

An algorithm for the triangulation in the presence of noise is described in [18]. It

minimizes a cost function that finds approximations of the corresponding points where the
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epipolar geometry given by Eq. (4.15) is valid. Considering the points x and X', one aims
to obtain the points X and %/, respectively, subject to the restriction that X’FX' = 0, by

minimizing the expression:

F =d(x,%)*+dX,%)? (4.29)

where the operator d(x,y) represents, for instance, the L, norm between x and y.

Since for the corrected points X and %’ Egs. (4.12) and (4.15) should be true, one can
chose to correct the point x by minimizing in Eq. (4.29) the distance between the point x
and some epipolar line 1, analogously for x’ and I’. In addition, since there is a relation
between 1 and I, it is possible to parameterize both lines using the same variable t. In this

scheme, the optimization searches for the value of t that minimizes:

F=d(x1(t))?*+dx,1'(t))3 (4.30)

which can be found as the solution of a sixth-th order polynomium in t [18].

4.2.8 Ambiguity in the Reconstruction

Section 4.2.6 shows that even if the fundamental or essential matrix is known, it is
not possible to define unequivocally the pair of cameras that generated the input images. In
fact, if there is no information about the original coordinate system in the three-dimensional
space, it is not possible to recover the exact location of the objects using only a projection
of the space. Any valid solution and the true solution are related by a transformation. This
section details this ambiguity in the reconstruction.

Using a set of corresponding points x; and x;, it is possible to obtain a reconstruction of
the scene {P,P’,X;}, with cameras P and P’ and the triangulated points X;. However, for any
projective transformation H, one can find a new triangulated point X; = HX, and a camera

matrix P = PH™! that have the same projection in the images, since:
PX; = PH 'HX, = PX; = X, (4.31)

analogously for the other camera.

One should notice that, if only the points x and x’ are known, it is not possible to
distinguish between the reconstructions {P,P’,X;} and {P, 1_3/, X.}, since they map to the
same image points and define the same epipolar geometry. In this case, it is said that any
reconstruction differs from the true one by a projective transformation, as is exemplified in
Fig. 4.6. This conclusion can also be drawn from Eq. (4.24), which shows a decomposition
of the fundamental matrix into two cameras with several degrees of freedom. In this
case, the parametrization of the cameras mirrors the degrees of freedom of the projective
transformation that defines the ambiguity of the reconstruction.

If the calibration matrices are known, only the extrinsic parameters of the cameras
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c’

(a) (b)

Figura 4.6 — Projective reconstruction of a scene. The reconstruction (b) differs from the real
reconstruction (a) by a projective transformation.

need to be estimated. It is possible to find a reconstruction of a scene such that for the set
of valid solutions, the projection rays for the image points always form the same angle with
the image plane. In this case, the reconstruction is named a metric reconstruction, and any
valid reconstruction is related to the true solution by a similarity transformation, as seen in
Fig. 4.7. This case is analogous to Eq. (4.28), which shows a pair of reconstructed cameras
where the second camera is rotated with respect to the first one and the displacement is

normalized.

(a) (b)

Figura 4.7 — Metric reconstruction of a scene. The reconstruction (b) differs from the real reconstruction
(a) by a similarity transformation.

4.2.9 Reconstruction from Multiple Views

If three or more views are available, the mathematical development of the geometry
that relates two views, described in the previous sections, can be extended. For three
views, one can define a tensor [18] to relate the geometry of the views, in replacement
of the fundamental matrix. Increasing the number of views, problems with an even greater
dimensionality must be solved. For these cases, the solution often consists in splitting the
views into pairs, reconstructing the scene for a pair of views and incrementally introducing
the other views.

In order to solve this problem, one can use an initial pair of images and find

corresponding points, which are used to estimate the fundamental matrix and find a
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valid pair of camera matrices and a set of triangulated points. In a subsequent step,
the other views are incorporated onto the initial reconstruction. For each view, one
finds corresponding points between the current view and any other view already included
in the reconstruction. For those points that were already used in the reconstruction,
the triangulated points are already known, therefore there is a relation between three-
dimensional points X; that were triangulated using the previous images and image points
x; in the current image. With a sufficient number of points, the camera matrix for this view
can be computed using Eq. (4.4). For the corresponding points that were not used in the
reconstruction, new triangulated points are computed, increasing the point cloud.

A different approach involves the computation of an independent reconstruction
for each pair of images, and then the normalization of every reconstruction to the same
coordinate system. As discussed in Section 4.2.8, given a pair of images, there is a family
of possible solutions for the reconstruction of the scene. If one uses two different pairs of
images representing the same scene and finds the camera matrices independently for each
pair, there is no guarantee that the reconstructions obtained for the first and second pairs are
compatible, since due to the ambiguity, each one has its own coordinate system. However,
among the family of possible solutions for the second reconstruction, one can assume that
there should be a solution in the same coordinate system of the first one. The algorithm
computes individual reconstructions and then finds the transformations that make them
compatible.

Given the first two images I, and I,, one finds the camera matrices P, and P, and
triangulates the image points. The triangulated points X; in this case are described with
respect to a coordinate system based on the two cameras. Using a new view I; and the last
view L, one creates another reconstruction with cameras P, and P, and a set of triangulated
points X;. Using correspondences between the images I,, I, and I,, one can find points in
the first reconstruction of the scene, that is, in the set X;, that are equivalent to points in the
set X; of the second reconstruction.

Since it is desired that every reconstruction is grouped in a global one, one estimates a
transformation X; = HX; that makes the second coordinate system coincide with the first one.
In order for the projections in the image to remain the same, the new camera must be such
that P, = P,H, which represents the camera matrix P, found in the second reconstruction

described with respect to the coordinate system used in the first one.

4.3 Lie Groups and Lie Algebra

Lie groups arise from several structures in nature that present a continuous symmetry.
In order to properly introduce the concept of Lie groups, we define some basic algebraic
definitions that will be useful for the remaining of this chapter.
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4.3.1 Group

Consider that G is a set and o is a binary operation, also called group operator, that
takes any two elements of G and returns an element of G. The pair (G,o) is called a
groupoid:

Vg,8,€G:g,08,€0G. (4.32)

To be considered a group, a groupoid must respect the following properties:
m Associativity: Vg1,82,85 € G §1°(82°83) =(81°82)°&s;
m Existence of identity element: de€ G| Vg €G: eog=goe=g;

w Existence of inverse element: Vg€ G: 3g7'€G| g log=gog ' =e.

4.3.2 Field

A field is a set F together with two operations + and - from F x F to F such that the
following properties are true:

- Associativity: Va,b,c€F: (a+b)+c=a+(b+c)and (a-b)-c=a-(b-c);
w Commutativity: Va,b€F: a+b=b+aanda-b=0>b-aq;

w Existence of identity element: Jde, € F| YVa € F : a+e, = a and Jde, € F| Va €

F:a-e,=a;

w Existence of inverse element: Ya € F : 3(—a) € F| a+(—a) = e, and Va € F,a #
e,: AaHeF|a-(aH)=e,;

w Distributivity of multiplication over addition: Va,b,c € F : a-(b+c)=(a-b)+(a-c);

4.3.3 Vector Space

Given a field F and a set V, defining two operations + from V x V to V and - from
F xV to V, a vector space over F is the set V together with the operations + and - with the
following properties:

- Associativity of addition: Yu,v,weV: (u+v)+w=u+ (v+w);

w Commutativity of addition: Yu,veV : u+v=v+u;

w Existence of additive identity element: de€ V| YueV : u+e=u;

m Existence of additive inverse element: YueV : I(—u) e V|u+(—u) =e;

- Associativity of scalar multiplication: YueV, a,b€ F: a-(b-u)=(ab)-u;
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w Distributivity of scalar multiplication with respect to vector addition: Yu,veV, a €

F:a-(u+v)=a-u+a-v;

w Distributivity of scalar multiplication with respect to field addition: Yu € V, a,b €
F:(a+b)-u=a-u+b-u;

w Existence of scalar multiplication identity element: Jde,, € F| YueV : e, -u=u;

4.3.4 Algebra

Assuming a field F and a vector space A over F with an additional binary operation -

from A x A to A, we say that A is an algebra over F if it has the following properties:
w Right distributivity: Vx,y,z€A: (x+y)-z=x-2+y -z
w Left distributivity: Vx,y,z€A: x-(y+2z)=x-y+Xx-z;

wm Scaling: Vx,y €A, Ya,b € F : (ax)-(by)=(ab)(x-y);

4.3.5 Lie Groups and Lie Algebra

A Lie group (G, o) is a special kind of group that has a particular geometry for which
the set G is a smooth manifold, such that the mappings a(g;,2,) = g&; © g, and b(g) =
g~ ! are both analytic. Therefore, the functions a(g) and b(g) are continuous, infinitely
differentiable and can be expressed as a Taylor series that converge around any point in its
domain.

In a matrix Lie group (G, o), the elements are g € G C RV*N and the group operator o

is the matrix multiplication. Some important examples of matrix Lie group are:

m General linear group: GL(N,R) = {A € R¥*V|det(A) # 0};
w Orthogonal group: O(N) = {X €GL(N,R)| X"X = I};

- Special orthogonal group: SO(N) = {X € GL(N,R)| XTX =1, det(X) = 1};

R
w Rigid body motion: SE(3) = |:

t
], with R € SO(3) and t = [ty, t,, t5]";
1x3

o : SR
3D similarity: Sim(3) = [
1x3

t
], with R € SO(3), t =[ty,t,,t5]" and s € R*.
Given a matrix Lie group, elements g € G close to the identity element can be written
as g = exp(X)[X € ¢, where ¥ is an open neighborhood of 0" *" in the tangent space at the
identity of G, and is called the Lie algebra ¢ [16]. The matrix Lie algebra ¥ associated to
the Lie group G is the set of all matrices X such that the exponential of each X results in an
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element of the Lie group G. The opposite is also valid, and the matrix logarithm provides

the inverse mapping between an element of the Lie algebra and an element of the Lie group:

exXp; 19— G (4.33)
log;: G — 9. (4.34)

The Lie algebra ¢ associated to a p-dimensional Lie group G is a p-dimensional vector

space, so there is also a mapping between ¥ and R? which is defined by the Vv operator:

[1,:9—>RP (4.35)
[17:RF - 9. (4.36)

In order to reduce the notation, it is also common to denote eXpG([]g) as expyy and
\ \Y
logo([1%) as logy.
The theory of Lie groups provides a tool to define symmetries from a mathematical
point of view. The Lie algebra represents the space tangent to the Lie group at the identity,
having a one-to-one map between them. The importance of the Lie algebra is that, in

general, it is easier to work on a linear space than the “curved” space defined by the Lie

group.

4.3.6 Adjoint Representation

Since the Lie groups are usually non-commutative, we define a function Ad,, called
the adjoint representation of the Lie group G, to express the non-comutativity. For X € G
and a € ¢, we seek an element b € ¥ in order to satisfy Xexp;(a) = exp;(b)X. It can be
proved that [16]:

b=XaX"'=Ad.(X)a. (4.37)

Other measurement of commutativity is the function ad;, called the adjoint

representation of the Lie algebra ¢. For a,b € R?, the function ad; is defined as:

adg(b)a = [[b1}[als —[als [bIS]: . (4.38)

Recall that a product on the group represents the group operator o, which maps two
elements of the group in another element of the group (for instance, a combination of two
successive rotations define a new rotation). Therefore, the adjoint representation embodies

the multiplicative structures of the group and the algebra.

4.3.7 Baker-Campbell-Hausdorff Formula

The BCH (Baker-Campbell-Hausdorff) formula [27] expresses the group product
directly in RP. Given X = exp”(a) and Y = exp”\(b), with X, Y € G, the following equation is
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valid:
log}(exp)(a) exp) (b)) = b + Js(b)a+ O(llal®), (4.39)
where
_ — B,ad;(b)" B 1
JG(b)—;;T =T+ sadg(b) ++ - (4.40)

is the left Jacobian of G and B, are Bernoulli numbers. This equation defines a first-order
Taylor linearization of the group product. One should also notice that this linearization is

expressed with respect to the adjoint representation. If the Lie group is commutative, then

log/(exp)(a)expi(b)) =b+a. (4.41)

4.3.8 Concentrated Gaussian Distribution

The distribution of X € G is called a (right) concentrated Gaussian distribution on G
of mean u and covariance P, denoted p(X) = %R(M, P), if:
X = exp)(e)u, (4.42)

where p(€) = A,(0,P) and P C RP*? is a symmetric positive-semidefinite matrix.
If the maximum of the eigenvalues of P is small, the probability mass is concentrated

around u and we may approximate p(X) as:

1 1 Vi -1 2
X)n e lllosc [, 4.43
PRI~ S et ’ (4.43)

4.3.9 Examples

Special Orthogonal Group SO(2)

The special orthogonal group SO(2) represents the group of rotations in the two-

dimensional plane, and is defined as:

S0(2) = {R e R*?*R"R =1 det(R) = 1}. (4.44)

The associated Lie algebra is:

bl T len)
so(2)=<x= lweR;. (4.45)
w 0

The adjoint representation Adg,)(R) is:

It is important to mention that this group is commutative, since the combination of

rotations with angles 6, and 6, is a rotation with angle 6, + 6,. For this reason, the adjoint
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is the identity matrix, which validates the commutative property.

Special Orthogonal Group SO(3)

The special orthogonal group SO(3) represents the group of rotations in the three-

dimensional space, and is defined as:

SO(3) = {Re R¥*R"R=1det(R) = 1}. (4.47)

The associated Lie algebra is:

so(3)=+{x=| wy 0 —w||w,wy,wseRp. (4.48)

_Wz Wl O

The adjoint representation Adgs)(R) is:

Contrary to the group SO(2), the group SO(3) is noncommutative. For instance, if one
rotates an object by 90 degrees in one axis, and after that rotates it by 90 degrees in another
axis, the result is different from the one obtained if the order of rotations is the inverse. For

this reason, the adjoint is not the identity matrix.

Special Euclidean Group SE(2)

The special Euclidean group SE(2) represents rigid transformations in the two-
dimensional space. The group has three dimensions, corresponding to translation and

rotation in the plane, and can be defined as:

SE(2) = {x = [R t} [ReS0(2),t= {X] € RZ}. (4.50)
01 y

The associated Lie algebra is:

0O —w v
se(2)=1x=[w 0 v||wv,neER}. (4.51)
0O 0 O

The adjoint representation Adgg ) (X) is:

R
Adgg(X) = [0 ﬂ IRe€S0(2),q= [ Y } e R2. (4.52)
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Special Euclidean Group SE(3)

The special Euclidean group SE(3) represents rigid transformations in the three-
dimensional space. The group has six dimensions, corresponding to translation and rotation

in space, and can be defined as:

X

R t ;
SE(3)={X= o 1 ReSOB3),t=|y|eRrR®}. (4.53)
b4
The associated Lie algebra is:
w 0O —-w; v
se(3)=1{x= ’ O vy, vy, Ve, Wy, Wy, ws ER B (4.54)
Wy Wy 0 v
0 0 0 0
The adjoint representation Adgps)(X) is':
0 -z
R [t]XR Y 3x3
-y x 0

Estimation of a Proper Three-Dimensional Rotation

In order to estimate a proper three-dimensional rotation, which has 3 degrees of
freedom, one can write an expression of the matrix in function of the rotation angles. This

can be made by the use of the Euler angles parametrization:

1 0 0 cosp O sinf| [cosy —siny O
X=|0 cosa —sina 0 1 0 siny cosy Of. (4.56)
0 sina cosa —sinf3 0 cosf 0 0 1

However, this parametrization, despite allowing the optimization using a single 3-

parameter vector [a, 3,7], has a drawback. If, for instance, § = 7t/2, then

0 0 1
X=| sinfa+vy) cos(a+y) Of, (4.57)
—cos(a+y) sin(a+y) O

IFor this particular case, we express the adjoint as b = Ad;(X) [a]’G\ in comparison to Eq. (4.37), since it
yields a simpler notation.
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which means that the angles a and y become coupled and changes in any of them produce
the same result, a change in the angle (a+y). This effect is called gimbal lock and produces
a loss of a degree of freedom under certain conditions.

A second approach is to use the matrix space:

X1 X3 X3
X= X4 XS X6 . (4.58)

X; Xg Xg

For this approach, the optimization is performed in the 9-parameter vector
[ X1, X5, X3, X4, X5, X6, X7, Xg, Xo ] With additional constraints X'X = I and det(X) = 1. Thus,
an algorithm has to estimate nine parameters, in contrast to the tree parameters used in the
previous representation. It must solve a constrained optimization problem, which is more
complex and more susceptible to ill-conditioning.

A third approach is to model the proper three-dimensional rotation as belonging to

the Lie group SO(3), which has an associated Lie algebra of the form:

0 _W3 W2 3
for some bases
00 O 0 01 0 -1 0
E;=|0 0 —1|[,E;=|0 O O|landEs=|1 0O Of. (4.60)
01 O -1 0O 0O 0 O

Since the Lie algebra can be mapped to a three-dimensional Euclidean space, the
optimization can be performed in a 3-parameter vector. In this case, the optimization
operates in a space where every matrix has size 3 x 3 and intrinsically respects the
constraints, which, besides providing a more elegant solution, also has better convergence
properties. In addition, several operations such as composition, inversion, differentiation,

and interpolation, can be addressed by the theory of Lie groups.

4.4 Robust Large Scale Monocular Video SLAM

The work developed in [1] presents an algorithm for the trajectory estimation of a
monocular calibrated camera evolving in a large unknown environment. This work develops
a SLAM algorithm that employs the concept of Lie groups to robustly align trajectories
estimated in multiple submaps. To align a larger number of submaps, the work proposes a
graph-based optimization algorithm, which also employs an efficient outlier-removal step.

This SLAM algorithm is composed of four main modules, which are depicted in

Fig. 4.8. To reduce the computational complexity and also to ensure that pairs of
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frames have a minimum camera displacement between them, a keyframe selection step
is employed. The keyframes are split in submaps and inside each submap the algorithm
estimates the camera trajectory along the frames. In order to align all submaps, three-
dimensional similarities between pairs of submaps, which transform the coordinates of
one submap to another, are computed. The recovered submaps and the 3D similarities
between submaps are used in the relative similarity averaging step, that computes the three-

dimensional similarities that take each submap to a common global coordinate.

Submap
. —
Reconstruction
Submap
| Reconstruction — -
video—»|  Keyframe Ll SPI?T::}MS:! R gel.e:tlv.? aligned
Selection niiartty imAartty submaps
Estimation Averaging
Submap
L )
Reconstruction

Figura 4.8 - Block diagram of the SLAM algorithm proposed in [1].

4.4.1 Keyframe Selection

To perform a keyframe selection, it is necessary to use a fast method that will be
applied in the whole set of frames. Thereby, the algorithm applies a Lucas-Kanade tracker
[28], which detects and tracks Harris points of interest (Pol) [29] in the video frames. A
frame is selected as a keyframe when the Euclidean distance between the corresponding Pol
of the current frame and the previous keyframe is bigger than a given threshold (which is
typically 5% of the image width).

Fig. 4.9 exemplifies the keyframe selection step. The method starts with the first frame
being considered a keyframe. The ensuing frames are tested and only the one whose content
displays a substantial difference with respect to the previous keyframe, which is represented
in the figure as the one where the black circle moves a minimum amount of pixels, is defined

as another keyframe.

4.4.2 Submap Reconstruction

The set of keyframes selected in the previous step is split in clusters of L consecutive
frames with overlap factor of 50% and, for each keyframe, SURF keypoints [20] are
computed. For each cluster (or submap), SURF descriptors are matched and used in
the estimation of corresponding points between pairs of keyframes. In order to increase

the number of connections among frames, reducing the occurrence of incremental errors,
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.........................................

keyframe keyframe keyframe

Figura 4.9 — Example of the keyframe selection step. The sequence of frames is represented as the dashed
parallelograms and the ones considered as keyframes are displayed with solid lines. Significant difference
from the previous keyframe is used to classify the next keyframe.

this step is performed for all pairs of consecutive frames. and also for some pairs of
non-consecutive frames. The essential matrix is estimated using the five point algorithm,
combined with a RANSAC algorithm [18] and a bundle adjustment optimization [9].

Using the essential matrix computed for a pair of frames, one can estimate the relative
rotation between the orientation of the camera for each frame [18]. As a result of this
calculation, several relative rotations between frames are estimated. These relative rotations
estimated for all pairs of frames are then employed in the computation of a global orientation
for each frame, in relation to a reference common to all frames. For this computation,
the relative similarity averaging algorithm described in the following sections can also be
employed.

After estimating a global orientation for each frame in the submap, the position of the
camera for each frame still needs to be determined. In order to estimate the camera pose for
each frame, keypoints are tracked among the frames and a linear programming is employed

in the computation of the known rotation problem [30], which is described below.

R, ¢; X
Known rotation problem: For a camera matrix P = [R t] =|Ry t,|,Xx=|y|isan

image point with corresponding three-dimensional point X. The reprojection error is given
by:

RX+t  RX+ tz) 4.61)

R3X+t3’y RyX +t

E(X,R,t) = H(x—

For the reprojection error to be less than a given threshold v, this condition can be

written as:

I((xR3 —Ry)X+ xt3—t1,(yR3—Ry)X + yt;— tz)”Z < y(RgX + t3)°. (4.62)

If R is known, this condition is a convex constraint, and linear programming can be
used to solve simultaneously for t and X.

In Fig. 4.10, one can see an example of the submap reconstruction step. Each submap
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in this case is a set of consecutive keyframes which may contain an overlap with another
submap. The camera trajectory for each submap is reconstructed by solving Eqs. (4.61) and
(4.62). The dashed lines highlight the reconstructed trajectory for the frames that belong to
the overlap of two submaps, therefore should represent the same trajectory. However, each
reconstruction uses its own referential, so these trajectories must be rotated, scaled and

translated with respect to each other. The next steps cope with the alignment of different

referentials.
Submap 1 Submap 2
K1 K2 K15 K8 K9 K22
L] L] L] L] L] L]
Camera trajectory Camera trajectory
z1 x1 z2 x2
(@ (b)

Figura 4.10 - Example of the submap reconstruction step. In this example, each submap is composed of a
sequence of 15 consecutive frames with eight frames of overlap with the previous and next submaps. For
each submap, a reconstruction of the camera trajectory is computed using Eqs. 4.61 and 4.62. The dashed
lines highlight the reconstructed trajectory for the frames in the overlap of two consecutive submaps. (a)
Submap 1. (b) Submap 2.

4.4.3 Pairwise Similarity Estimation

After the previous step, for each submap a camera trajectory and a cloud with
triangulated points were estimated. However, the reconstruction for each submap was
made according to a different coordinate system. In order to align all submaps, a three-
dimensional similarity between pairs of submaps must be calculated, which can be seen as
matrices that belong to the Lie group Sim(3):

. sR t
Sim(3) = {0 1} , (4.63)
1x3

with R € SO(3), t =[t,, t,,t3]" and s € R*.

To reduce the number of similarities to compute, a bag-of-words [31] approach is
applied to three-dimensional SURF descriptors of all submaps to find a unique descriptor
for the whole submap. A similarity is determined for consecutive submaps and also between
each submap and its 10 nearest neighbors using the bag-of-words descriptor as a metric of

distance. One should notice that if the camera returns to a known position, it is expected
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that the bag-of-words descriptors should be similar, therefore this step is also responsible
for performing a loop closure.

In order to estimate a similarity between two submaps, SURF descriptors for each
three-dimensional point are obtained by averaging the SURF descriptors of the image points
that generated this triangulated point. The descriptors of the three-dimensional points
are then matched between submaps, and a three-point algorithm [32] combined with the
RANSAC and a refinement step is applied to obtain a three-dimensional similarity.

Finally, considering that this similarity can be modeled as a concentrated Gaussian
distribution on the group Sim(3), a covariance for each similarity is also found. In the end
of this step, the algorithm has computed similarities Z;; € Sim(3) between the coordinate
system of the submap i and the submap j along with a covariance %;; for these estimates.

Fig. 4.11 exemplifies the pairwise similarity estimation. The frames inside each
submap are used for the triangulation of three-dimensional points. By tracking
triangulated points across different submaps, it is possible to compute a pairwise similarity
transformation between two submaps, which is composed of rotation, translation and
scaling, that aligns the axis for both reconstructions to a same common axis. The next

step takes all relative similarities and maps all axes to a global reference.

Submap 2

-®

®  Submap 1 g

N
EETY

\ similarity

é L —

y1 \\\\‘ * y2

21 x1 2 X2

Figura 4.11 - Pairwise similarity estimation step. For each submap, keypoints inside the frames are
tracked and triangulated to three-dimensional points (points X1,....XM for submap 1 and Y1,...,YM for
submap 2). Using corresponding three-dimensional points from two submaps, a similarity transformation
is computed that transforms a point represented according to the axis x1,y1,z1 to a point represented

according to the axis x2,y2,z2.

4.4.4 Relative Similarity Averaging

From the results obtained in the previous subsection, relative similarities Z;; that align
the submaps i and j were computed, along with a covariance matrix ¥;;. In this step, we
need to estimate the global similarities (X;s, X;5), that is, the three-dimensional similarities
between a global reference frame S and each submap. Given the submaps i and j, one
can consider that the similarity Z;; that takes from the submap i to the submap j should be
equivalent to going from the submap i to the reference frame S (using the global similarity
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X;s), and then going from the reference frame S to the submap j (using Xj_sl). Considering
the existence of noise in the measurements, represented by the covariance matrix %;;, the

following model is obtained:

_ i -1
Zi;= eXpA(bij)XiSXjS , (4.64)

where bf]. ~ Mo (0,41, ;) is a white Gaussian noise.
Considering that the measurements Z;; are outlier-free, an estimate of the global
similarities X;; and X ;5 can be obtained by the relative similarity averaging problem, which

minimizes the following cost function:

argmin Z |[log" Z, ;X s X 5t ||2 ) (4.65)
Kishier i jee Y
with ||||; representing the Mahalanobis distance. This equation is similar to a generalized
least squares problem, where one estimates the distance between a model (X ;sX i_sl) and the
estimate (Z;;), pondering by the covariance of the error (%; ;). One can also note the function
log", which maps the similarities to the Lie algebra, where the optimization is performed.

If two submaps do not possess a significant interception of regions in the scene, a
relative similarity computed between them can represent an outlier, which prejudices the
minimization problem represented by Eq. (4.65). Thus, an outlier removal algorithm is
necessary to solve the relative similarity averaging problem.

The problem given by Eq. (4.65) can also be seen as the inference problem in a
factor graph ¢ = {¥, &}. In this context, each vertex ¥; corresponds to a global similarity
measurement X, and each pairwise factor &;; corresponds to a relative measurement Z;; that
links the vertices ¥; and ¥;. The following subsections describe an outlier removal algorithm
and a relative similarity averaging algorithm that uses notions of graph optimization.

In Fig. 4.12, one can see an example of the relative similarity averaging step. Using the
relative similarities computed in the previous step, for each submap is computed a similarity
transformation that maps its axis to a global referential. The trajectories found for each
submap, that can now be described with respect to the same referential, are merged to

define the camera trajectory for the whole input video.

4.4.5 Outlier Removal Algorithm

To remove outlier measurements in the SLAM algorithm, it is assumed that every
relative similarities between consecutive submaps are inliers. For the other relative
similarities, the error inside a cycle (for instance, the error of transforming from submaps a

to b, from b to ¢ and then from c to a), is tested:

e'Ple <t (4.66)
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Camera trajectory Camera trajectory
v N 4 o 4+ ...
z1 x1 2 X2
(@)

Global camera trajectory

/

x N

(b)

Figura 4.12 - Example of the relative similarity averaging step. The camera trajectory is estimated
for each submap according to its own referential and contains only a part of the total trajectory. After
computing relative similarities between pairs of submaps, all referential are mapped to a global one
and the parts of the trajectory are merged to compose the total trajectory of the camera along the whole
video. (a) Camera trajectories for each submap that are combined to form a single one. (b) Global camera
trajectory for the whole video that is a composition of the trajectories computed for each submap.

where € is the cycle error, P is the covariance associated with this cycle and ¢ . is a value
based on the y2.

A naive algorithm to test a relative similarity Z;; could be to test the cycle
ZiZ11-1)Z1-1)1-2)-+-Zk—1)k> Which contains the similarity between the k-th and [-th submaps
(Z,), and all consecutive similarities from the [-th to k-th submaps (Z;;_)...Z—1)x)-
However, this approach can fail for larger cycles, since it accumulates any small errors
in each similarity. Instead of using consecutive measurements in the cycle, an algorithm
proposed in [1] searches for the shortest cycles (in the sense of minimum number of
connections) that contain only inliers. This algorithm is described in Alg. 2.

4.5 Other Approaches

Two other open source SLAM algorithms were also considered for this study. In this

section, we provide a brief explanation for each algorithm.
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Algorithm 2 Algorithm to remove outlier similarity measurements.

Input: Relative similarities Z;;, covariance matrices ¥;;, value of ¢ ..
Output: Graph containing only inlier relative similarities.
: Initialize an empty graph ¥ = {¥, &}
: Add the vertex X, to ¥
: forke{l,..,N} do
Add the vertex X;4 to ¥
Add the factor {Z(k_l)k, Z(k—l)k} to &
6: forl €{1,...,k} do
: Find the shortest path from X, to X5 in ¢
: Compute the cycle error € and covariance P
. if e"P7'e < t,» then
10: Add the factor {Z;, X} to &
end
end
end

w N =

¢ A
TO—=

4.5.1 ORB-SLAM: Oriented Fast and Rotated Brief Simultaneous

Localization and Mapping

ORB-SLAM [12] is a feature-based SLAM algorithm that uses the ORB [33] feature
descriptor along with a parallel implementation to achieve a fast algorithm. It is composed
of five main steps, which are shown in the block diagram depicted in Fig. 4.13: an
initialization, that computes the first reconstruction for a pair of keyframes and estimates
a map of the environment; a tracking of corresponding points between the keyframes and
each new image, in order to estimate the pose of this image according to the current map;
a relocalization, to be used if the tracking was lost; a local mapping, to further optimize the

map and the poses; and a loop closure to prevent the error accumulation and the scale drift.

Relocalization

Local | _f Loop |  trajectory
Mapping Closure and map

video —»| Initialization —{ Tracking

Figura 4.13 - Block diagram of the ORB-SLAM algorithm [12].

Initialization

For a first pair of keyframes, the algorithm computes the fundamental matrix and
estimates the position of the cameras and a map of triangulated three-dimensional points
(in this case, called map points), similar to Sections 4.2.6 and 4.2.7. Keypoints are extracted
using a FAST corner detection [34] algorithm and a tracking of descriptors across the frames

is made by the use of the ORB descriptor. In order to cope with planar scenes, it also
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estimates a homography between the frames and decides whether to use it instead of the

fundamental matrix. The initial frames are considered keyframes for the next steps.

Tracking

After the initialization of the trajectory and the map, the algorithm performs a tracking
of the image keypoints in subsequent frames. For this purpose, in order to speed up the
computation, it assumes initially a constant motion model. The keypoints in the previous
keyframe that were triangulated (generating the map points) are searched within a certain
area in the new image. If a sufficient number of matches were found, it is assumed that
the constant motion model is valid and the corresponding keypoints in the new image are
associated to the map points. Therefore, the pose for this frame can be computed using
the correspondences between image points (keypoints) and three dimensional points (map
points), using Eq. (4.4).

If it was not possible to find a sufficient number of matches, the constant motion
model is disregarded. The algorithm creates a bag-of-words based on [35] for the previous
keyframe and the new frame. By comparing the bag-of-words for both frames, it is able to
determine the correspondences of keypoints in the images, also creating correspondences
between image points and three dimensional points to estimate the pose. the algorithm is
not able to find a sufficient number of corresponding points, it performs the relocalization
step described bellow.

After the determination of matches for the new frame and the estimation of a pose
for it, the local mapping refines the results by minimizing the reprojection error for the new
frame and a set of keyframes, optimizing the camera poses and while also searching for new
correspondences. Finally, the algorithm uses some criteria to determine if the frame should

be considered a new keyframe.

Relocalization

If the tracking of keypoints between the new frame and the last keyframe did not yield
a sufficient number of corresponding points, the algorithm searches among all keyframes for
the frames that record the same scene as the current frame. For this purpose, it computes the
bag-of-words described in [35] for the current frame and the set of keyframes, and searches
for the keyframes that have similar features to the current frame.

If the algorithm finds similar keyframes, it uses the bag-of-words to track keypoints,
in a similar manner as the previous step, creating matches between keypoints in the new
frame and the triangulated map points. These correspondences are used in an attempt to
estimate the pose for the new frame, followed by a refinement. Finally, the algorithm uses

the number of obtained matches to decide if the pose is reliable and should be accepted.
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Local Mapping

In parallel to the previous operation, the algorithm performs a local mapping step to
keep up to date the poses and the map of the environment. It continuously removes and
inserts new keyframes and map points, and removes and fuses point duplicates. Afterwards,
it performs a refinement by the use of a bundle adjustment technique, that minimizes the

reprojection error.

Loop Closure

To detect the existence of loops, the algorithm compares the bag-of-word of the current
keyframe to all other keyframes that are not already connected to the current keyframe. If
there is a consistent match, a similarity transform is computed [36] between the current
keyframe and the loop candidate, to cope with the scale drift and other errors in the pose
estimation. The algorithm uses this transformation to search for more matches between
image points in the frames and between map points and image points. If enough inliers are
found, the loop is accepted, and in this case, the poses are refined and corrected.

4.5.2 LDSO: Direct Sparse Odometry with Loop Closure

LDSO [15] is a method that improves the DSO [14] by introducing a loop closure. It
uses image intensities instead of feature descriptors such as the ones seen in the previous
methods (or any other intermediary representation) to track points across frames and
estimate the poses (hence being a direct method), while using a sparse set of keypoints.
The use of image intensities allows the method to be robust even in featureless regions of
the frames (for instance, flat surfaces). The method estimates the poses by minimizing
a photometric error (in contrast to a reprojection error), but includes the conventional
computation of ORB features and bag-of-words seen in the previous methods to identify
loop closures. A block diagram of this algorithm can be seen in Fig. 4.14.

Calibration
video — Model ] Windowed — Loop Closure —» trajectory
Formulation Optimization P and map

Figura 4.14 - Block diagram of the LDSO algorithm [15].
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Calibration

Along with a pre-processing step that uses the pinhole camera model described in
Section 4.2.2 to remove the radial distortion, this method also employs an image formation
model [37] to compensate for the non-linear response function of the camera and the lens

attenuation, improving the robustness to illumination changes.

Model Formulation

For each frame, the method computes the photometric error of a point that is observed
both in a reference frame and a target frame as a weighted sum of squared differences over
a neighborhood:

aj

(1;[p] =)~ e (Ll —by)

t;ed

(4.67)

Ep; = Z Wp

PES

Y

where in this equation .4, indicates the neighborhood, w, is a weight, |||, is the Huber
norm, t; and t; are the exposure times of the images I; and I}, and q;, a;, b; and b; account
for possible differences in exposure times or illumination.

The position of the point p’ in one image is calculated using the point p with the
application of an inverse projection, a rigid body motion and a projection, which depend on
the intrinsic parameters of the cameras and the poses involved. Therefore, one can express
the photometric error with respect to the camera poses and estimate them by minimizing
this error.

The full photometric error is:

Ephoto = Z Z Z Epj: (468)

i€ PEP; jeobs(p)
where i accounts for all keyframes %, p considers all keypoints & contained in the frame

i, and j contains all frames obs(p) where the point p is observed.

Windowed Optimization

The algorithm minimizes the error given by Eq. (4.68) using a Gauss-Newton
approach. To spare computation, it applies a sliding window in the keyframes, in order
to optimize Eq. (4.68) without using the whole set of keyframes for each new frame. In
addition, the algorithm continuously keeps track of which points p and frames & are used,
and in which frames obs(p) a point is visible, including the use of techniques to remove
outliers and detect occlusions.

Loop Closure

In order to employ a loop closure algorithm, the algorithm selects among the set of

points &, the ones that belong to corners and computes an ORB descriptor for each of
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them. Using the features computed for each keyframe, a bag-of-words is computed and loop
candidates are proposed. The algorithm searches for correspondences of ORB features in
the loop candidate frames and computes a transformation between them, which is included

in the optimization.

4.6 Experimental Results

The result of a SLAM algorithm is a sequence of camera matrices P;,---,P, € SE(4)
that are used to composed the camera trajectory (where we extend the 3 x 4 camera matrix
defined in Section 4.2 by including a row [0 00 1]). One can also assume that the
ground truth can be converted to a set of poses Q;,---,Q, and there is a synchronism
between the sequences. It is important to notice that each sequence is specified according
to a different coordinate system, due to the ambiguity in the reconstruction. A common
evaluation metric is the average trajectory error defined in [ 38] to compare the performance
of a SLAM algorithm.

For the following results, the trajectory error was evaluated using an implementation
in Python developed by [39]. Three algorithms were tested: the method of [1], referred
to as RLS-MVSLAM, which was implemented in Matlab and is available at [40], and the
C++ implementation of the algorithms ORB-SLAM2, using the monocular version of the
algorithm available at [41], and LDSO, which is available at [42].

4.6.1 Average Trajectory Error

The average trajectory error (also called average pose error) measures the global
consistency of the estimated trajectory. Since the trajectories may have a different
coordinate system, a first step computes a rigid-body transformation S [36] (see
Section 4.3.9) that maps the estimated trajectory onto the ground truth. For any given
frame i, the absolute trajectory error can be defined as:

Ei == Ql_l SPl‘. (4.69)

From the error computed in Eq. (4.69), we obtain the translational component t; using
an operator defined as:

0
trans(E) =[1 0]E, [1] (4.70)

.t
where for E; = |:I:; 1‘] we have:

trans () = [ 1 o}[? tl] [ﬂz[l 0:||:t1i:|=ti (4.71)
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The average trajectory error is defined as the root mean square error of the

translational error:
1 1/2
ATE = (— Z ||trans (Ei)llz) . (4.72)
ni=

4.6.2 Tests with the KITTI Database

An experiment was performed using videos from the KITTI database [43], which is
composed of videos acquired using an autonomous driving car moving along a road. This

database also employs a laser scanner and a GPS to provide an accurate ground truth for

the camera position. Some examples of frames from this database are shown in Fig. 4.15.

Figura 4.15 — Frames from sequence 2 in the KITTI odometry dataset. (a) Frame 30. (b) Frame 50. (c)
Frame 1000. (d) Frame 4660.

The SLAM algorithms were tested in the sequences from the KITTI database with a
ground truth in order to compare the results. Tab. 4.1 shows a comparison of the results
obtained by RLS-MVSLAM, ORB-SLAM2 and LDSO. From these results, one can notice that
for some sequences the methods have similar results, while for other sequences the error
may differ by one order of magnitude. The method ORB-SLAM2 has the lowest error for
five sequences, followed by the RLS-MVSLAM, which has the best results in four sequences.

Fig. 4.16 shows some examples of camera trajectory estimated by the three methods
along with the ground truth. In this figure, the plots (a), (b), and (c) contain the trajectory
obtained in sequence 0, where all methods have a similar performance. The plots (e), (f),
and (g) show the results for sequence 6, where the method RLS-MVSLAM has the largest
error, while the plots (h), (i), and (j) show the trajectory obtained for sequence 9, where
the RLS-MVSLAM has the lowest error.

For sequence 0, even though the camera moves along a trajectory with several curves
for both sides, the algorithms can estimate a trajectory for the camera that has the same

shape as the ground truth. For the other sequences, at least one method shows a trajectory
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that does not match the ground truth. One can associate this problem to a drift in the
computation, as the trajectories present a shape similar to the ground truth.

In the algorithms, the trajectory is computed individually for different pairs of frames,
whose results are transformed to match the other, and then incrementally updated. If the
procedure of matching the results for different pairs of frames produces an error, it can be
expected that the trajectory has a drift that increases over time.

For monocular systems, the drift is often corrected by a loop closure. Comparing,
for instance, the plots (h) and (i) to (g) and the ground truth, one can see that the loop
closure algorithm in (h) and (i) was not able to identify that the first and last positions of
the trajectory should be close to it other. This behavior explains the difference in the order
of magnitude of the error seen in Tab. 4.1.

Tabela 4.1 — Average trajectory error on the KITTI dataset. For each position i, the error ||trans (E;)|| is

computed. The table shows the minimum and maximum of this error, and the ATE (which is the root
mean square error) defined in Eq. (4.72) for the trajectory obtained by each method.

RLS-MVSLAM [1] ORB-SLAM2 [12] LDSO [15]

min max ATE min max ATE min max ATE
0 | 0.69 | 20.35 7.57 1.49 | 26.89 10.19 | 1.77 | 23.15 10.95
1 14.40 | 611.71 | 333.95 | 0.33 | 40.10 9.55
2 | 10,57 | 163.62 | 62.35 | 0.25 | 77.30 | 23.20 | 0.86 | 109.21 | 25.91
3 | 0.25 4.08 1.17 0.34 3.46 1.97 | 0.15| 8.89 2.99
4 | 0.05 0.84 0.37 0.03 0.87 0.39 1.05 | 3.06 1.22
5] 0.27 8.82 5.28 0.30 9.24 3.99 |0.88 | 12.89 4.90
6 | 0.28 | 173.00 | 93.45 | 0.39 | 23.69 15.35 | 0.78 | 23.74 | 13.62
7 | 0.14 5.06 2.71 0.59 4.71 2.33 | 0.06 | 5.20 2.43
8 | 48.51 | 515.93 | 188.24 | 0.53 | 155.04 | 51.17 | 8.83 | 448.76 | 128.57
9 | 067 | 17.19 9.35 1.80 | 128.71 | 64.09 | 5.16 | 167.26 | 75.90
10| 2.59 | 85.00 | 32.19 | 0.71 23.41 7.63 | 3.56 | 49.06 17.52

* for this case the algorithm was not able to converge.

4.7 Research Challenges

Despite being a topic with over 30 years of study,there are cases, with challenging
environment or motion in which such algorithms fail [44]. In particular for monocular
visual SLAM systems, the frames must have enough texture and consecutive frames must
have a sufficient overlap for the algorithms to work properly [45]. In this section, we show
that the videos acquired using the DORIS system do not always satisfy those requirements,
presenting a new challenging scenario with several restrictions for the SLAM algorithm, that
should be adopted as another benchmark to foster the development of more robust SLAM

algorithms.
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Figura 4.16 — Camera trajectory estimation for some videos of the KITTI odometry dataset. Each graph
shows a view of the estimated trajectory (in solid lines) aligned with the ground truth (in dashed lines).
For each position i, the error ||trans (E;)|| is computed and the trajectory is colored by associating the
values of the error to a heatmap. Sequence 0: a) RLS-MVSLAM. b) ORB-SLAM2. ¢) LDSO. Sequence 6:
d) RLS-MVSLAM. e) ORB-SLAM2. f) LDSO. Sequence 9: g) RLS-MVSLAM. h) ORB-SLAM2. i) LDSO.
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4.7.1 DORIS Surveillance System

DORIS - Monitoring Robots for Offshore Facilities is a project that endeavors to
design and implement a surveillance system for remote supervision, diagnosis, and data
acquisition on offshore facilities [46, 47, 48]. A robotic platform was installed in a industrial
environment as shown in Fig. 4.17(a), and runs in a circular track whose model can be seen
in Fig. 4.17(b). Several videos containing different objects were recorded, and the robotic
platform also moved at different speeds. Examples of frames from this database can be seen
in Figs. 4.17(c) and 4.17(d).

© | 5

Figura 4.17 — DORIS surveillance system database. (a) Robotic platform in a industrial environment.
(b) 3D model of the rail. (¢) Frame from a reference video. (d) Frame from another video in the same
position.

4.7.2 Tests with DORIS Videos

An attempt to estimate the trajectory for the DORIS videos revealed that the algorithms
compared in Section 4.6 are unable estimate a trajectory. In these videos, an issue is that the
camera sometimes passes near a pillar, which can be seen in Fig. 4.18. The frames obtained
in the regions with a pillar have a flat surface that occupies most of the frame, which makes
feature descriptor algorithms such as SURF and ORB not able to detect a sufficient number
of keypoints. In addition, the descriptor for each keypoint is not distinctive since the image
does not have a diversified content.

Hence, even if the algorithm finds a sufficient number of keypoints, the detected

keypoints are not representative to describe the scene content. Consequently the procedure
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of finding corresponding points, computing the epipolar geometry and estimating the
camera displacements (see Section 4.4.2) becomes unreliable.

(a)

Figura 4.18 — Example of frames from the DORIS videos with a flat surface occupying a significant portion
of the frame. (a) Frame 7400. (b) Frame 12570.

One can try to ignore the regions with pillars and bypass the computation of the camera
trajectory for these frames, for example, interpolating the displacement obtained using a
frame before and a frame after the pillar. However, as can be seen from Fig. 4.19, the pillars
may be so wide that there is almost no overlap in the scene before and after it, which makes

the estimation of the camera trajectory unfeasible.

(a) (b)

Figura 4.19 — Example of frames from the DORIS videos showing the lack of overlap in the scenes before
and after a pillar. (a) Frame obtained to the left of the pillar shown in Fig. 4.18(a). (b) Frame obtained
to the right of the pillar shown in Fig. 4.18(a).

If we split each video sequence into several smaller sequences, removing the parts of
the videos that are near a pillar, other problems arise. Even with the removal of the regions
with pillars, several other textureless objects may occupy a large portion of the frames,
due to the presence of large machinery in the industrial environment, which, as previously
mentioned, deteriorates the results. Examples of the textureless objects contained in the
scene can be seen in Fig. 4.20.

Another problem on the DORIS videos that can make the SLAM algorithm fail is related
to the type of movement performed by the camera. In these videos, the camera moves along
a direction that is perpendicular to the orientation of the camera, contrary, for example, to
the videos in the KITTI dataset, which have the camera pointed to the front of a car. In this
case, the viewpoints disappear much faster in the videos, which reduces the field of view in
common between several views.
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(a) (b)

Figura 4.20 — Example of frames from the DORIS videos containing large textureless objects. (a) Object
in a sequence with curves in the rail. (b) Object in a sequence on a straight section of the rail.

4.8 Summary

This chapter described several concepts related to the estimation of the camera
trajectory and mapping of the environment. It included an introduction to the field of
epipolar geometry that studies the geometrical relation between multiple views recording
the same scene, the three-dimensional points and their projection in the images. Since
most algorithms require the computation of a matrix structure, a brief description of Lie
algebra and optimization in a matrix space was presented, which allows the reader to better
understand the reasoning behind the operations on the matrix space.

Three representative SLAM algorithms were depicted, with a greater focus on [1].
The methods were tested and evaluated on the KITTI dataset, a traditional dataset for the
evaluation of odometry algorithms. The reader is invited to reproduce the results with the
implementations referenced on this chapter.

Current challenges in visual SLAM were discussed by the end of the chapter.
Characteristics that hinder the computation of the visual SLAM were exposed, along with
an illustration of the occurrence of such characteristics in the DORIS videos. Such aspects
reveal that the DORIS database present a new challenging scenario with several restrictions
for the SLAM algorithm, that we believe can be used to stimulate the development of new

algorithms.
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Variaveis Latentes: Fundamentos e

Tendeéncias

Leonardo Tomagzeli Duarte (Faculdade de Ciéncias Aplicadas (FCA), Universidade
Estadual de Campinas (UNICAMP)

Introducao

O problema de separagdo de sinais é, certamente, um dos mais desafiadores da drea de
processamento de sinais. As primeiras abordagens para separar sinais foram baseadas em
técnicas classicas de filtragem, impulsionadas sobretudo pelo surgimento de filtros digitais.
O surgimento da filtragem adaptativa também foi um marco fundamental para a drea de
separacdo. Em particular, o cancelador adaptativo de ruido (ANC, do inglés adaptive noise
cancelling), proposto em [1], pode ser considerado como uma das primeiras solucoes que
exploram a diversidade trazida por dois sinais distintos — o ANC tem como entradas uma
mistura que contém o sinal de interesse e um sinal que traz informacoes sobre o sinal
interferente observado na mistura.

A configuracio padrio do filtro ANC foi generalizada na década de 1980, periodo
considerado inicial para uma vertente da separagdo de sinais que se popularizou com a
denominacdo separacdo cega de fontes (BSS, do inglés blind source separation). O trabalho
pioneiro de Hérault, Jutten e Ans [2] pode ser considerado um marco para area, uma vez que
trouxe duas contribuicées fundamentais. A primeira delas se refere a configuracdo utilizada
em [2], que, de certo modo, estende a configuracdo padrio do filtro ANC ao realizar o
processo de separacdo de um conjunto de sinais fontes a partir de um conjunto de misturas.
Desde entdo, essa configuracdo de multiplas entradas e multiplas saidas vem permeando
praticamente todas as solucdes ndo-supervisionadas em separac¢éo de sinais.

A segunda contribuicdo fundamental de [2], e talvez a mais disruptiva, diz respeito a
incorporacdo de estatisticas de ordem superior no processo de separagdo. Tal abordagem,

que se deu por meio do uso de correlagdes ndo-lineares como critérios de separacao,
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pode ser vista como uma extensdo da cldssica metodologia de estatistica multivariada
conhecida como andlise de componentes principais (PCA, do inglés principal component
analysis) [3]. De fato, enquanto que a PCA se vale de estatisticas de segunda ordem
para extrair sinais descorrelacionados a partir de um conjunto de observagdes, a solugdo
proposta em [2] introduziu um processo de separacdo no qual os sinais extraidos eram
ndo-linearmente correlacionados, se aproximando assim do conceito de independéncia
estatistica. Tal paradigma viria a ser denominado posteriormente de andlise de componentes
independentes (ICA, do inglés independent component analysis) [4].

Outro trabalho seminal da area de BSS foi apresentado em 1994 por Pierre Comon [5],
que formalizou o conceito de ICA. Nesta formalizac¢do, [5] mostrou que, num sistema linear
e sem memoria, a recuperacdo de um conjunto de fontes a partir de um conjunto de
misturas pode ser feita por um processo de recuperacdo da independéncia estatistica entre
as estimativas das fontes, desde que as fontes originais sejam nao-gaussianas e mutualmente
independentes. O trabalho de Pierre Comon foi fundamental para fazer da ICA a abordagem
mais utilizada na drea de BSS, além de ter auxiliado na popularizacdo dessa ferramenta
como uma metodologia mais geral para analise de dados [6].

Num segundo momento dos estudos em BSS, buscou-se por solugdes alternativas
a ICA, sobretudo para lidar com situagdes nas quais a hipétese fundamental da ICA, a
independéncia estatistica entre as fontes, ndo € satisfeita. Isso pode ocorrer, por exemplo,
na separacdo de sinais gerados por diferentes instrumentos musicais, uma vez que pode
haver sincronismos entre tais instrumentos. A busca por essas alternativas se fez pela
exploracdo de outros tipos de informacgdes a priori sobre as fontes. Por exemplo, na analise
de componentes esparsos (SCA, do inglés sparse component analysis) [4, 7], considera-se que
as fontes podem ser representadas por um sinal esparso, ou seja, um sinal cujas amostras
sdo, na maior parte do tempo, nulas ou préximas a zero. Um ponto relevante referente a
exploracdo da esparsidade é que esta propriedade pode ser considerada em representacoes
outras que a temporal, como, por exemplo, num dominio frequencial.

Outra abordagem que se consolidou na comunidade de BSS se fundamenta numa
decomposicdo matricial conhecida como fatoracdo de matrizes ndo-negativas (NME do
inglés Non-negative Matrix Factorization). A hipdtese central da NMF é que os sinais fontes
(e, eventualmente, os coeficientes do sistema misturador) sempre assumem valores néo-
negativos. Tal cendrio é comum em diferentes campos de aplicacdo; por exemplo, na
andlise de sinais quimicos, as fontes necessariamente assumem valores ndo-negativos, uma
vez que elas geralmente representam concentragdes (ou atividades) quimicas [8]. A NMF
pode ser realizada, dentre outras abordagens, a partir da formulacdo de um problema de
inferéncia Bayesiana, capaz de levar em conta, além da propriedade de ndo-negatividade,
outras caracteristicas conhecidas de anteméao sobre as fontes.

O breve panorama descrito nos permite concluir que hd uma gama interessante de
abordagens para lidar com o problema de BSS. No presente capitulo, as linhas gerais desse

conjunto de abordagens serdo apresentadas, de modo que o objetivo do texto é servir
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como um documento introdutdrio sobre separacdo de fontes. Neste sentido, é importante
salientar que o texto ndo é exaustivo — muitas abordagens relevantes em BSS ndo sao
discutidas. Além disso, por se tratar de um texto introdutdrio, consideraremos uma notagao
matemadtica simplificada. Os leitores interessados em se profundarem na drea encontrardo
material de grande relevancia, por exemplo, nas seguintes referéncias: [4, 9]. Com relacao
a organizacdo do capitulo, o texto se inicia, na Secdo 5.1, com uma apresentacdo de um
conjunto importante de abordagens utilizadas em BSS (ICA, SCA e NMF). Em seguida,
na Secdo 5.2, discutimos brevemente algumas tendéncias na drea de BSS. O capitulo é

concluido com algumas consideracoes finais, expostas na Secao 5.3.

5.1 Principais abordagens em separacao

O problema de separacdo cega de fontes € ilustrado na Figura 5.1. Busca-se estimar um
conjunto de N sinais fontes, representados pelo vetor s(t) = [s;(t) s,(t) ...s5(t)]", levando
em conta a observaciio de um conjunto de M sinais, x(t) = [x,(t) x,(t) ...xy,(t)]", que

sdo obtidos a partir de um processo de mistura em s(t), dado por
x(t) =F(s(t)), (5.1

onde F : RN — RM representa, para cada amostra, o processo de mistura em questo.

Processo de mistura |  Sistema separador

Critério _
de separacdo g |

Figura 5.1 — O problema de separagdo de fontes.

\

O carater ndo-supervisionado (cego) do problema de BSS diz respeito a auséncia
de amostras de treinamento (ou calibracdo), {s(t),x(t)}, e a auséncia de informacoes
detalhadas sobre o sistema misturador — de fato, considera-se apenas que ha algumas
informacGes sobre a natureza do modelo de mistura. Finalmente, os sinais representados
pelo vetor y(t) = [y,(t) y,(t) ... yy(t)]" correspondem as estimativas das fontes fornecidas
pelo método de separacio, dadas por y(t) = G(x(t)), onde G : RM — RN representa a acéo

de um sistema separador.
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Os estudos em BSS sdo categorizados de acordo com a natureza do sistema misturador.
Por exemplo, as metodologias em BSS podem considerar sistemas misturadores lineares
e ndo-lineares. Outra propriedade importante que se leva em conta € se o processo de
mistura é com memdria ou sem memoria. Finalmente, em funcdo dos niimeros de fontes
e misturas, o sistema misturador pode ser classificado como: i) determinado (N = M);
ii) sobre-determinado (N < M); iii) sub-determinado (N > M). E interessante notar
que, via de regra, modelos de mistura sobre-determinados sdo transformados em modelos
determinados através da aplicacdo de técnicas de reducao de dimensionalidade [6].

No presente trabalho, focaremos em modelos lineares e sem memdria, uma vez que tal
configuracdo é a mais usual em BSS. Neste cendrio, o processo de mistura expresso em (5.1)
se simplifica da seguinte maneira:

x(t) = As(t), (5.2)

onde A é chamada de matriz de mistura. Neste caso, portanto, o problema de separacdo diz
respeito a estimacdo dos sinais s(t) sem o conhecimento dos parametros da matriz A. Via
de regra, a maior parte das metodologias em BSS consideram o caso determinado. Todavia,
algumas das estratégias que serdo discutidas na sequéncia podem ser aplicadas também ao

caso sub-determinado.

Andlise de componentes independentes

Conforme discutido anteriormente, a génese da ICA estd diretamente relacionada ao
problema de BSS. De fato, a ICA foi a primeira abordagem capaz de separar fontes de
maneira ndo-supervisionada e ainda ocupa o posto de metodologia mais disseminada na
area. Na ICA, considera-se uma modelagem probabilistica do problema, de modo que as
amostras de um dada fonte s;(t) sdo vistas com realizacoes de um varidvel aleatéria. A
hipotese central da ICA estabelece que as varidveis aleatérias que representam as fontes sdo
mutualmente (estatisticamente) independentes [4]. Conforme mencionado anteriormente,
hd aplicacdes que ndo satisfazem tal condicdo de independéncia, e, logo, ndo podem ser
abordadas por métodos de ICA.

Tendo em vista a hipétese de independéncia das fontes, a ICA se apoia no fato de que
os sinais observados x(t) sdo mutualmente dependentes, pois as misturas correspondem
a combinacoes lineares de um mesmo conjunto de varidveis aleatdrias. Deste modo, a
ideia central na ICA é ajustar um sistema separador tal que as estimativas fornecidas y(t)
sejam, novamente, independentes. Ou seja, na ICA, a separacdo se d4 por um processo de
recuperacao da independéncia estatistica [4].

Matematicamente, o processo de recuperacdo presente na ICA pode ser expresso por
um problema de otimizacdo. No caso de um modelo de mistura linear, determinado e sem
memoria, o processo de otimizacio busca ajustar uma matriz de separacio W € RV*V | tal

que y(t) = Wx(t), de modo a minimizar uma funcéo objetivo J(y(t)) cujo valor minimo é
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atingindo para sinais estatisticamente independentes, ou seja:

W = argmin J(Wx(t)). (5.3)
w

Uma escolha natural para a funcdo J(-) se origina da divergéncia de Kullback-
Leibler [10], que pode ser entendida com uma medida de dissimilaridade entre distribuicoes
de probabilidade. No caso da ICA, considera-se a divergéncia de Kullback-Leibler entre
a distribuicdo conjunta de y(t), representada por f,(y), e o produto das distribui¢bes

marginais de cada estimativa y,(t), representadas por f, (y;), dada por:
D (f ) ﬁf (y~)) = Jf (y(n))log(i) dy (5.4)
o i=1 S Y nflzlfyi(yl‘)

Dado que independéncia estatistica é caracterizada pela seguinte condicdo:

=] [£.00;
i=1

a divergéncia expressa em (5.4) serd sempre ndo-negativa, de modo que se anulard somente
quando as variaveis y; forem estatisticamente independentes.
E possivel mostrar que (5.4) também corresponde a informacdo mutua entre os

elementos de y(t), representada por I(y), ou seja:

D (fy(y), ]_[fyi(yi)) =1(y)= > H(y)—H(y), (5.5
i=1 i=1

onde H(-) representa a entropia diferencial [10]. Assim, um dos principais paradigmas em

ICA visa a minimizacdo da informac¢do mutua entre os sinais estimados, isto é:
N
W = argmin ZH(yi)—H(y). (5.6)
W o

A minimizacdo desta funcdo objetivo pode ser feita por um método iterativo baseado no

gradiente descendente. A regra de atualizacdo neste caso é dada por [4]:

W(k-‘rl) — W(k) —u (E{\ij(y)XT} — W_T) , (57)
onde dlog f. (v,)
_ dlogf, (v
wyi (yl) - dyl

¢ conhecida como funcao escore de y;.
Héa duas questoes centrais relacionadas ao paradigma expresso em (5.6). A primeira
delas, de natureza mais tedrica, refere-se as condi¢des que devem ser observadas para que a

recuperacao de componentes independentes implique na separacdo das fontes. Ou seja, em
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quais situagoes a ICA separa as fontes? A formalizagdo dessa questao foi feita em [5], que, a
partir do Teorema de Darmois-Skitovich, mostrou que aplicacdo da ICA para separacdo das
fontes requer que: i) a matriz A seja de posto completo; ii) Exista, no maximo, uma fonte
Gaussiana; i) as fontes devem ser varidveis aleatérias mutualmente independentes. Além
disso, mesmo quando tais condi¢Oes sdo satisfeitas, o processo de separacdo apresenta as
ambiguidades de escala e de permutagdo [5]. Em outras palavras, ndo é possivel recuperar a
escala e a ordem original das fontes. Via de regra, tais ambiguidades ndo limitam a aplicagdo
préatica da ICA, pois, na maioria das aplicacoes, o objetivo principal é recuperar a forma dos
sinais fontes.

Uma segunda questdo relevante associada a formulacdo (5.6) é de natureza mais
prética e diz respeito a iteracdo expressa em (5.7). De fato, essa regra de atualizagdo exige
a estimacdo da funcdo escore, que, por sua vez, requer a estimac¢do das distribuicoes de
probabilidade das estimativas das fontes, o que, geralmente, é custoso do ponto de vista
computacional. H4 uma série de outros paradigmas de ICA que podem ser entendidos
como simplificacoes da informacdo mutua e que sdo capazes de realizar ICA. Por exemplo,
na abordagem Infomax' [12], a regra de atualizacfio é dada por (5.7), porém substituindo
as funcoes escores por fungdes nao-lineares fixas, e, logo, sem a necessidade de processos
de estimacao de distribuicoes de probabilidade. Curiosamente, a escolha das funcdes nao-
lineares no paradigma Infomax, ao menos no caso linear, ndo requer um procedimento
refinado, dado que o algoritmo resultante é capaz de separar as fontes mesmo quando tais
fungoes sdo diferentes das fungdes escores das fontes originais [13].

Ainda no contexto de simplicacio da busca pela independéncia estatistica na
abordagem ICA, cabe mencionar os métodos baseados na minimizacdo da nao-
gaussianidade [6]. Esta metodologia se fundamenta no fato que, devido ao teorema
central do limite [6], os sinais misturados sdo mais gaussianos do que os sinais fontes.
Logo, a recuperacdo das fontes pode ser feita por um processo de maximizacdo da nao-
gaussianidade dos sinais estimados. Tal processo pode ser formulado como problemas de
otimizacao cujas fung¢des objetivos sdo dadas por medidas de gaussianidade, como a curtose
e a negentropia [6]. A maximizac¢do da ndo-gaussianidade é o paradgima adotado por um

dos algoritmos mais utilizados em ICA: o FastICA [14].

Analise de componentes esparsos

A revolucéo esparsa em processamento de sinais se intensificou em meados da década
de 2000, sobretudo devido aos trabalhos seminais de Emmanuel Candés e David Donoho no
problema de sensoriamento comprimido [15, 16]. Em breves termos, um sinal esparso pode
ser representado por um vetor cujos elementos sdo, em sua maioria, nulos ou préximos de
zero. Um tipo natural de esparsidade pode ocorrer em sinais de fala, pois, em uma conversa,

uma pessoa pode passar a maior parte do tempo em periodos de siléncio. Outro aspecto

10 paradigma Infomax pode ser interpretado & luz do estimador de mdxima verossimilhanca para o
modelo (5.2) [11].
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interessante em processamento de sinais esparsos € que a propriedade de esparsidade pode
ser explorada em representacgdes outras que o tempo. Por exemplo, sinais de musica, mesmo
ndo sendo necessariamente esparsos no tempo, podem admitir uma representacdo esparsa
apos a aplicacdo de versdes modificadas da transformada discreta do cosseno [17].

No contexto da BSS, as primeiras abordagens considerando a esparsidade das fontes
foram propostas para tratar do caso de modelos de mistura sub-determinados [18, 19]. Tal
abordagem pode ser entendida a partir da Figura 5.2, que ilustra um problema de separacgédo
de N = 3 fontes a partir de M = 2 misturas. Assumindo que os sinais sdo esparsos, o grafico
de dispersao bi-dimensional das misturas assume uma forma caracteristica na qual ha uma
concentracdo de amostras em torno das direcoes definidas pelas coluna da matriz de mistura
A. De fato, nas situagcdes em que apenas uma das fontes estd ativa (por exemplo, a fonte
s;(t), de modo que s,(t) = s;(t) = 0), a mistura observada € proporcional a primeira coluna

de A, ou seja

s1(t)
x,(t) _ | G2 Qi3 0 _ si(t)ay;
X,(t) dz; Ay o3 0 s1(t)ay

Logo, nos momentos de siléncio de s,(t) e s;(t), as misturas observadas x(t) sdo dadas por

versoes escalonadas (por s,(t)) da primeira coluna da matriz de mistura.

0.5 T T T ‘ ‘w H 0.8
o0 MWMWM%MWW ‘”lmm‘ “ M 06
-0.50 5(;0 10‘00 15‘00 20‘00 25‘00 3000 04r
t
0.5 T T T T T 02
T TR TP AL -
w” T I H' ru M ” ‘ !“MH \‘ U\ | \| < or .o
-0.50 500 10‘00 1500 20‘00 2500 3000 -0.2 » . g
t -
05 \ : ‘ ‘ o4l
o [M i“ I H I ,\ll | \I"‘ S
» 0 I T I
IRLLR ‘ IR 08|
% 500 1000 1500 2000 2500 3000 08 s s s s ‘ ‘
t -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
XI
(a) Fontes esparsas. (b) Gréfico de dispersdo bi-dimensional das duas
misturas.

Figura 5.2 — Exemplo considerando M = 2 misturas de N = 3 de fontes esparsas. Devido a esparsidade
das fontes, as misturas se agrupam em torno das dire¢Ges dadas pelas colunas da matriz de mistura.

O agrupamento de fontes esparsas em torno das colunas da matriz de mistura
motivou algumas abordagens para o problema de separa¢do em modelos sub-determinados.

Em [18], os autores propuseram um métodos baseado em duas etapas, a saber:

1. Estimacdo da matriz de mistura a partir de um procedimento de agrupamento para

estimacdo das colunas de A;

2. De posse de uma estimativa de A, resolucdo do sistema linear x(t) = As(t). Tal etapa,

que é conduzida levando-se em conta uma restricdo que impoe esparsidade nas fontes,
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¢ similar ao problema inverso que surge em sensoriamento comprimido [15], e, logo,

pode ser abordado por uma ampla de métodos atualmente disponiveis.

Esse procedimento de duas etapas requer, naturalmente, que as fontes sejam esparsas em
um certo dominio.

A propriedade de esparsidade também pode ser utilizada no contexto de BSS em
modelos determinados. Em [20], por exemplo, foi proposto um método de separacéo
baseado na extracdo de fontes esparsas. Para descrever essa abordagem, consideremos uma

notacao matricial na qual todas as fontes sdo representadas pela seguinte matriz:

s, s1(1) s;(2) ... s(T)
g Sy _ 55(1) 55(2) ... s,(T)
Sy sy(1) sy(2) ... sy(T)

onde T é o numero total de amostras das fontes. Da mesma forma, os sinais misturados

podem ser representados por uma matriz X, dada por:
X =AS, (5.8)

onde A € a matriz de mistura.
No problema de extracdo de uma fonte, busca-se ajustar um vetor de extracdo w, de
modo que o sinal dado por

y =w'X

forneca uma estimativa de uma fonte. Em [20], o ajuste de w buscou recuperar a fonte mais
esparsa no sentido da pseudo-norma L, que é dada pelo numero de elementos nao-nulos
de um vetor. Matematicamente, tal abordagem pode ser expressa pelo seguinte problema
de otimizacao:

w = argmin |[y|o, (5.9)

onde ||y]|, representa a pseudo-norma L, do sinal extraido y. Para evitar uma solucao trivial,
é necessdrio adicionar em (5.9) uma restricdo associada ao vetor w, como, por exemplo,
|lwll, = 1.

Para o caso de N = 2 fontes (com||s,||, < S,||y), [20] mostrou que uma condicao
suficiente para que a resolucao do problema de otimizacdo expresso em (5.9) leve a extracao

do componente mais esparso é dada por:

|Is2llo

S <
Isillo < =

(5.10)

Em outras palavras, é possivel extrair a fonte mais esparsa quando o seu nivel de esparsidade
(no sentido da pseudo-norma L,) é no maximo metade do nivel de esparsidade da outra

fonte.
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Ainda sobre a condicdo (5.10), cabe destacar que ela ndo se apoia na independéncia
estatistica entre as fontes. Ou seja, é possivel separar fontes dependentes se houver uma
diferenca do nivel de esparsidade entre elas. Finalmente, uma tltima observacédo é que a
condicdo (5.10) pode ser estendida para problemas com mais de duas fontes [20]. Além
disso, em [21], as condicOes necessdrias para separacgao de fontes esparsas foram derivadas

tanto para modelos instantdneos quanto para modelos convolutivos.

Fatoracao em matrizes nao-negativas

Em muitas situacbes prdticas, as fontes e os coeficientes de mistura assumem,
necessariamente, valores ndo-negativos. O caso pratico mais emblemadtico dessa situacgéo se
encontra em quimica. De fato, as fontes nessa drea geralmente representam concentragoes
ou atividades quimicas, que sdo grandezas ndo-negativas [8]. Tal caracteristica foi uma
das motivagOes para o surgimento na década de 1970 da abordagem de fatoracdo em
matrizes ndo-negativas (NMF) — na drea de quimiometria, a NMF também é chamada de
resolucdo multivariada de curvas (MCR, do inglés multivariate curve resolution) [22]. Na
area de processamento de sinais e aprendizado de mdquina, a NMF se popularizou apds o
trabalho de Lee e Seung [ 23]; desde entdo, tal ferramenta vem sendo utilizada em diferentes
aplicacoes [24].

Matematicamente, uma possivel versdo da NMF pode ser formulada pelo seguinte

problema de otimizacao

min IIX—AS|[2, s (5.11a)

AS

sujeito a A S>0, (5.11b)
onde || - || representa a norma de Frobenius de uma matriz. Em outras palavras,

a NMF corresponde a um problema inverso bilinear, no qual os termos do modelo de
mistura sio, necessariamente, nio-negativos. E interessante notar que algumas variagoes
da NMF consideram outras medidas de distancias ou divergéncia alternativas a norma de
Frobenius [24]. Neste sentido, um exemplo comum é o uso da divergéncia de Kullback-
Leibler entre as observacdes e a representacdo dada pelo modelo.

Dentre as diferentes estratégias de otimizacdo no contexto da NME uma
abordagem popular é a formulacdo de um problema de quadrados minimos alternados,

matematicamente dado por:
S = argmin |[X— A*VS||2, sujeito a S > 0. (5.12)
S

A® = argmin||X— ASW||2, sujeito a A > 0. (5.13)
A

Esse processo iterativo simplifica a abordagem do problema, pois, em cada um dos passos,

basta resolver um problema de regressdo supervisionada com uma restricio de nao-
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negatividade. Ao término de sua execucao, esse algoritmo fornece uma estimativa das fontes
e uma estimativa da matriz de mistura.

Assim como no caso de outras abordagens de BSS, uma questao relevante no contexto
da NMF ¢é se a recuperacdo de estimativas das fontes e dos coeficientes de misturas nao-
negativos implica, necessariamente, na separaciio das fontes. E possivel mostrar [25] que,
na formulacdo expressa em (5.11), a solucdo do problema ndo € tinica e que pode haver
solugdes que sdo capazes de prover uma boa representacdo dos dados observados porém
que ndo correspondem as fontes originais. Diante dessa limitacdo, o uso de NMF em
separacdo € feito, via de regra, com a adi¢do de medidas de regularizacdo. Por exemplo,
uma escolha comum ¢é considerar, como informacao a priori, que as fontes, além de nao-
negativas, também sdo esparsas em alguma representacdo [26]. Outra estratégia comum é
assumir que as fontes podem ser descritas por sinais suaves, que nao apresentam grandes

variacOes temporais [24].

5.2 Tendéncias na area

A BSS continua sendo um campo ativo de pesquisa na drea de processamento de
sinais, além de despertar interesse de outras comunidades (por exemplo, aprendizado de
maquina). Nesta secdo, apresentamos brevemente alguns tépicos mais recentes de pesquisa
em BSS e que vém ganhando destaque nos féruns da drea. Os detalhes desses assuntos
podem ser consultados nas referéncias indicadas.

Um primeiro tépico que cabe mencionar diz respeito aos sistemas multimodais de
aquisicdo da informac¢do. Um exemplo de multimodalidade no contexto de BSS se encontra
no problema de imageamento cerebral por meio de misturas provenientes de diferentes
sistemas de aquisicdo, como, por exemplo, eletroencefalograma e a ressonancia magnética
funcional [27]. Um dos desafios neste caso é como explorar simultaneamente sinais
distintos, que, via de regra, apresentam resolu¢des temporais e espaciais diferentes. A
abordagem deste tipo de problema requer algum tipo de estratégia de fusdo de dados, que
pode ser realizada, por exemplo, via métodos de separacdo cega conjunta de fontes (JBSS,
do inglés joint blind source separation) [28].

Outro tépico que desperta a atencdo da comunidade é o uso de métodos tensorais em
separacgao [29, 30]. Essencialmente, um tensor pode ser visto como uma generalizacdo
de uma matriz, pois pode apresentar mais de dois modos — um vetor pode ser visto
como um tensor de um modo, e uma matriz pode ser vista como um tensor de dois
modos. Umas das vantagens do uso de tensores em BSS é que as decomposicOes tensorais,
como a decomposi¢do CPD [29], apresentam aspectos interessantes de unicidade. O mais
importante deles é que, via de regra, as condi¢des de unicidade sdo menos restritivas se
comparadas as restricoes usualmente impostas em métodos convencionais de separacéo.
Tal caracteristica permite, a partir de um tensor de mistura, separar fontes dificeis de serem

obtidas por métodos convencionais. O preco a ser pago é a necessidade de mais um tipo de
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diversidade na aquisicdo dos dados — nos métodos convencionais, trabalha-se geralmente
com apenas a diversidade espago-temporal.

Em muitas situacOes praticas, ha mais de uma informacdo a priori sobre os sinais
fontes. Por exemplo, as fontes podem ser mutualmente independentes e, ao mesmo tempo,
ndo-negativas. Motivados por tais casos, algumas pesquisas vém buscando desenvolver
métodos capazes de explorar simultaneamente uma coletanea de informacgdes conhecidas
sobre as fontes. A estratégia mais difundida nesse sentido é a formulacdo de um problema
de inferéncia Bayesiana, no qual as informacdes das fontes sdo modeladas a partir de
distribuicbes a priori de probabilidade. A abordagem Bayesiana [4] vem se mostrando
eficaz em diversas aplica¢Oes praticas, geralmente dificeis de serem abordadas por métodos
convencionais de BSS [31, 32].

Uma estratégia mais recente para lidar com multiplas informacoes sobre as fontes
considera uma formulacdo baseada em otimizacdo multiobjetivo [33]. Nesta abordagem,
busca-se otimizar mais de um critério de separacdo simultaneamente, de modo que a
resposta fornecida ao usudrio do método é um conjunto de soluc¢des ditas ndo-dominadas.
Assim, valendo-se, por exemplo, de sua experiéncia subjetiva sobre o problema, o usuario
pode selecionar, dentre o conjunto de solu¢des ndo-dominadas, uma estimativa das fontes.
Essa abordagem é interessante, portanto, em problemas nos quais o usudrio do método
pode contribuir diretamente no processo. Isso ocorre, por exemplo, na separacéo de sinais
biomedicais, em geofisica, e em andlise quimica.

Finalmente, um tépico que ja vem sendo estudado desde a década de 1990, porém que
ainda merece atencdo dos pesquisadores, é a separacao de fontes em modelos nédo-lineares.
O desafio neste caso é que as condicOes de separabilidade geralmente observadas no caso
linear ndo sdo vdlidas para o caso geral de misturas ndo-lineares. Uma revisdo recente
sobre o assunto pode ser encontrada em [34]. Além disso, cabe destacar que esse assunto

foi recentemente revistado pela comunidade de aprendizado de méaquina [35].

5.3 Conclusoes

Este capitulo teve como objetivo prover uma primeira leitura aos leitores interessados
na drea de BSS. Como discutido ao longo do texto, hd uma gama interessante de abordagens
de separacdo, além de perspectivas desafiadoras de pesquisa na drea. Além disso, o assunto
é tratado por diferentes comunidades cientificas, que incluem processamento de sinais,
aprendizado de mdquina, estatistica aplicada e computagéo.

Cabe mencionar, por fim, que a generalidade da formulagdo do problema de BSS faz
com os métodos de separac¢do sejam aplicados em problemas reais de diferentes dreas. Uma
importante area de aplicacdo € a separacdo de dados biomédicos, no contexto, por exemplo,
de separacéo de sinais cardiacos e cerebrais. Também cabe destacar o grande interesse pelo
problema de separacao de sinais de dudio. Além dessas duas dreas, métodos de separacdo de

fontes vém sendo intensamente aplicados em controle de qualidade [36], telecomunicacGes,
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andlises quimicas, sensoriamento remoto e imageamento sismico. Um descritivo dessas

aplicacdes pode ser encontrado em [4].
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Manual de Construcao e Montagem
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6.1 Introducao

Apds um longo periodo de exploracdo espacial por parte de alguns poucos
paises, universidades e instituicOes cientificas tém vindo a desenvolver a tecnologia de
pequenos satélites, que possuem custos bastantes reduzidos comparando aos convencionais,
permitindo que sejam desenvolvidos por qualquer instituicdo/pais com menos recursos. Em
termos gerais, pequenos satélites sdo qualquer satélite com peso inferior a 500kg [1]. Para
classificacdo de alguns pequenos satélites, além do peso, deve-se também cumprir alguns

critérios especificos como forma e dimenséo, é o caso de Cubesats e Cansats (ver tabela 6.1).

| Classificacdo | Massa (kg) |
Minissatélite | 100 - 500
Microssatélite 10 - 100
Nanossatélite 1-10

Picossatélite 0.1-10

Tabela 6.1 - Classificacdo de pequenos satélites.

Um cansat é uma representacdo de um satélite convencional, integrado no volume e
na forma de um refrigerante, e se enquadra na classificacdo dos picossatélite. O primeiro
Cansat Angolano, foi criado com base numa juncdo de sinergias entre o Gabinete de
Gestdo do programa Espacial Nacional (GGPEN) e a academia nacional. Foi construido
com propdsitos educativos, mediante o qual é possivel adquirir experiéncia em "Desenho,
Integracdo, Testes e Lancamento'munindo os formandos de conhecimentos sobre as
fungdes, arquitectura e integracdo de subsistemas que compde um satélite convencional.

O cansat é entdo lancado a uma altitude de algumas centenas de metros por um foguete
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ou largado a partir de um drone ou mediante um baldo, e sua missdo comeca: realizar um
experimento cientifico e conseguir um pouso seguro.

O desafio para os formandos é encaixar todos os principais subsistemas encontrados
em um satélite, como alimentacdo eléctrica, comando e processamento de dados,
comunicacdo e carga util neste volume minimo. Os cansats oferecem uma oportunidade
Unica para os alunos terem uma primeira experiéncia pratica de projectos espaciais reais.
Eles sdo responsaveis por todos os aspectos: seleccdo da missdo, projeccdo do cansat,
integracdo dos componentes, programacao do computador de bordo, teste, preparacdo do
lancamento e analise os dados.

Neste manual veremos os procedimentos de montagem do Cansat Angolano.

6.2 Configuracao Geral

Os satélites sdo normalmente considerados como um sistema subdividido em varios
subsistemas. Esses subsistemas, por sua vez, podem ser um agrupamento de unidades
(hardware) que realizam uma determinada funcdo no satélite. Por exemplo, para o
fornecimento de energia eléctrica no satélite, é usado o subsistema de alimentacao eléctrica
que agrupa todos os dispositivos electrénicos que geram, condicionam e distribuem a tensao
para todo satélite.

O Cansat Angolano é composto por 5 subsistemas, como pode ser observado na Figura

6.1, onde é apresentado também a funcdo de cada subsistema.

Producdo,
z§ Suporte armazen::nento
< verificagdo e
s [— controlede

energia
e
5 e -
B Subsistema Subsistema da
- Fonte de Energia
s da estrutura Elétrica (EPS)
- N

| [
1
CANSAT
Figura 6.1 — Subsistemas do Cansat Angolano
Os 5 subsistemas estdo subdivididos em 6 placas circulares, com as seguintes
denominacoes:
w» Placa GPS;

m Placa PWR (Alimentacdo Eléctrica);

m» Placa USR (Usuario);
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m Placa OBC (Computador de Bordo);
m Placa COM (Comunicagéo);
m Placa CAM (Camara).

A Figura 6.2 apresenta a disposi¢do dos elementos que compde o cansat, dando énfase
as placas e suas unidades. As interfaces da cada uma das placas pode ser observado na

Figura 6.3.

Parafuso M3
Estrutura Externa

GPS LEDs Botdo On-Off
Espagadores >
n 20mm
l Pilha 9V
PWR
I Combinagdo de Pin Header e Pin Socket
e 20mm
% USER
n 20mm
| 0BC Memérias

| |

20mm
APC
i-— COMM

] 20mm
J Cémara

Camera Hole > 10mm

[«
>
= I

Figura 6.2 — Composi¢do do Cansat Angolano

Cada placa tem duas faces. é chamada de superficie superior a face que contém a
nomenclatura da placa (ex.: 2-PWR) e de superficie inferior a face que contém o logotipo
do GGPEN (Figura 6.4). A conexdo eléctrica entre as placas é feita por uma combinacao
de dois pin-sockets e um pin header duplo. As placas sdo mecanicamente fixadas usando
espacadores metdlicos do tipo M3 de 10 e 20mm. A placa GPS é fixada por parafusos M3.

6.3 Descricao do Circuito Eléctrico

Nesta seccdo veremos em detalhes a constituicdo de cada placa.

6.3.1 Placa GPS

A placa GPS faz parte do subsistema da carga ttil e é composta por um mddulo GPS,
um botao on-off, um led indicador de energia, dois leds de uso geral e um pin socket para
ligacdo com a placa abaixo (placa PWR).

A Figura 6.5 representa o esquema eléctrico da Placa GPS e na Figura 6.6 é
apresentado uma fotografia da parte superior e inferior da referida placa.

O conector J1-GPS.PWR, localizado na superficie inferior, faz a conexdo da placa GPS
com a placa PWR. O BT-PWR é o botédo on-off que liga e desliga o circuito todo. Esse botdo
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Figura 6.3 — interfaces do Cansat
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Figura 6.5 — Esquema eléctrico da Placa GPS

é o interruptor entre a pilha e o pino Vin do arduino. O conector J2-GPS, na superficie
superior, serve para a conexdo com o modulo NEO-6M. Esse mddulo é também afixado
por dois parafusos M3 ou pelo conector S2. O LED D1 sinaliza que o circuito todo esta
alimentado (com 5V). Os LEDs D2 e D3 sdo de uso genérico, podendo ser programado pelo
usudrio. Comummente serd usado D2 para sinalizar a operac¢édo ou funcionamento do OBC.

Os resistores R1, R2 e R3 sdo para a proteccao dos LEDs.
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Figura 6.6 — Placa GPS, Superficie superior e inferior

6.3.2 Placa PWR

A Placa PWR faz parte do subsistema de Alimentacdo Eléctrica (EPS) e é composta
por uma pilha de 9V que fornece tensdo a todo circuito. Entretanto, o subsistema EPS ¢é
composto ainda pelos reguladores de tensao de 5 e 3.3V do arduino e pelo botédo on-off.

E importante referir que serdo adoptadas as denominacdes VCC para a tensdo de 5V,
VDD para a tensdo de 3.3V, Vin para a tensdo da pilha (9V) e GND para o terra (OV). E
possivel usar qualquer outra fonte acima de 7V. Por exemplo duas baterias de Litio de 3.7V
em série.

A Figura 6.7 representa o esquema eléctrico da Placa PWR e na Figura 6.8 é

apresentado uma fotografia da parte superior e inferior da referida placa.

BAT1 BAT2 J3-PWR.GPS
CONN-SILEONN-SIL2 66226-008
| | I | 0000

-|ol -|edd w]o|~|o]

Iu-w- 0|

—_ | 6 00 |
J4 - PWR.USER
POWER 6622¢-008

Figura 6.7 — Esquema eléctrico da Placa PWR

O conector J3-PWR.GPS, localizado na superficie superior, faz a conexao da placa PWR
com a placa GPS. Os conectores BAT1 e BAT2 servem para a conexao da pilha. Para a
utilizacdo comum, é suficiente o uso de uma pilha, ligada a qualquer um dos conectores.
O circuito pode funcionar com uma pilha de 9V, uma pilha A23 de 12V, ou baterias de litio
acima de 7V. O Conector J4-PWR.USR, na superficie inferior, faz a conexdo da placa PWR
com a placa USR.
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Figura 6.8 — Placa PWR, Superficie superior e inferior

6.3.3 Placa USR

A placa USR faz parte do subsistema da carga ttil. Ela permite ao usudrio conectar
sensores de diferentes tipos compativeis com o OBC possibilitando assim a realizagdo de
diversas missdes. Na placa tem um pin socket que permite a conducdo dos sinais das placas
GPS e PWR para a placa OBC. Tem ainda um outro pin socket que disponibiliza 4 pinos
analdgicos, 4 pinos digitais, comunicacdo SPI, comunica¢do [12C e comunicacdo UART por
software. E importante lembrar que todos esses pinos sdo partilhados, ou seja, se usar a
comunicacdo I12C, terd apenas mais dois pinos analdgicos restantes. A Figura 6.9 ilustra o
esquema eléctrico da Placa USR.

Na placa estdo devidamente marcados os pinos partilhados. Na superficie superior
estdo marcados os pinos digitais e analégicos, na superficie inferior estdo marcados os pinos

de comunicacdo SPI e I12C, como pode ser observado na Figura 6.10.

J5 - USER.PWR J6 - USER.OBC1
66226-008 A5 A3 D12D11

PIN PIN PIN PIN

) 000 |o0o0000000 |

O) GND S
O) vee O) GND =
O) voo O) vee =
TFIN VDD S
= USUARIO ™ J7 - USER.OBC2

Figura 6.9 — Esquema eléctrico da Placa USR

O conector J5-USER.PWR, localizado na superficie superior, faz a conexdo da placa
USR com a placa PWR. Os Conector J6 e J7-USER.OBC, na superficie inferior, fazem a
conexdo da placa USR com a placa OBC. Ainda na Placa USR podem ser conectados uma

variedade de sensores compativeis tais como GY-91, DHT11 ou MQ7.

0000000«
0000000°
00000000

90000
000000000000
00:

-4
v
=
m

000000
00000
000000

Figura 6.10 — Placa USR, Superficie superior e inferior
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6.3.4 Placa OBC

A placa OBC faz parte do subsistema de Comando e Processamento de Dados. Ela
¢ composta por um arduino nano. Na superficie inferior ha também um méddulo leitor de
cartdo micro SD que armazena as fotos da camara.

A Figura 6.11 representa o esquema eléctrico da Placa OBC e na Figura 6.12 é

apresentado uma fotografia da parte superior e inferior da referida placa.

S3 GND VCC D12 D11 D13 D3
OBC = -
—;—-O | I IJ14 SD CARD A
© | - ofof< J8 - OBC1.USER
CONN-SIL2 =A%
N O
vpo O =
X GPs
» [0 Rx obs
h1 O—21-0
9 - OBC2.USER 66226-008
D10
o1t Arduino
b2 r J10 - OBC.COMM
A2 1
A3 2

™ COMM

™
6 ax CAM

66226-006

ARDUINO NANO2

Figura 6.11 — Esquema eléctrico da Placa OBC

Os conectores J8-OBC1.USER e J9-OBC2.USER, localizados na superficie superior,
fazem a conexdo da placa OBC com a placa USR. O Conector J10-OBC.COMM, na superficie
inferior, faz a conex&o da placa OBC com a placa COM. O conector J14-SD Card, na superficie
inferior, serve para a conexdao do mdédulo leitor micro SD. O conector S3 serve para fixacdo
do médulo leitor micro SD. A placa possui ainda o socket (encaixe) para o arduino nano
que tem a funcdo de computador de bordo.

Figura 6.12 — Placa OBC, Superficie superior e inferior

6.3.5 Placa COM

A placa COM faz parte do subsistema de comunicacéo e possui um moédulo transceptor
APC220 com a capacidade de transmissdo de até 1Km em campo aberto.
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A Figura 6.13 representa o esquema eléctrico da Placa COM e na Figura 6.14 é

apresentado uma fotografia da parte superior e inferior da referida placa.

J12 - CO! VIM,O¥ APC220
GNO
o ; N VCQ 0
3 EN 3
T RD [ APC220
5 TXO5
o= 1o
66226-006 -0

' 20
LED-RED-0805
D4 R4

s oo Jro |-

O
66226-004

' 20
LED-RED-0805

S1
J13 - COMM.CAM igl

Figura 6.13 — Esquema eléctrico da Placa COM

O conector J12-COMM.OBC, localizado na superficie superior, faz a conexdo da placa
COM com a placa OBC. O Conector J13-COMM.CAM, na superficie inferior, faz a conexao
da placa COM com a placa CAM. O mddulo APC220 esta soldado directamente na placa
COM. O conector S1 serve de suporte para afixacdo do APC220.

Figura 6.14 — Placa COM, Superficie superior e inferior

6.3.6 Placa CAM

A placa CAM faz parte do subsistema da Carga ttil e é composta por uma camara
VCO0706 (ou VC0703) cujas fotos sdo armazenadas no cartdo micro SD. A organizacdo das
linhas de interface permite usar todos esses dispositivos sem problemas ou interferéncias.

A Figura 6.15 representa o esquema eléctrico da Placa CAM e na Figura 6.16 é

apresentado uma fotografia da parte superior e inferior da referida placa..

A

D7 R7
CAMARA - -
220
DGLED-RED-060§6
s ! 2 20
LED-RED-0805
J14 - CAM.CONI J12 - CAMERA
L 1] {wea
2 B
4 TX04 Camera
210
66226-004 |
56221

Figura 6.15 — Esquema eléctrico da Placa CAM
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O conector J14-CAM.COMM, localizado na superficie superior, faz a conexdo da placa
CAM com a placa COM. O Conector J12-CAMERA, localizado também na superficie superior,
serve para conexdo da cdmara VC0706. O LED D6 serve de sinalizacdo para os sinais de
saida da camara. O LED D7 serve de sinaliza¢do de alimentacdo do circuito, dessa forma é
possivel ver que a placa estd alimentada do topo ou da base. Os resistores R6 e R7 servem
de proteccdo dos LEDs.

Figura 6.16 — Placa CAM, Superficie superior e inferior

6.4 Procedimentos de Montagem

Estando todas placas soldadas e preparadas, e com todos testes eléctricos feitos, o
Cansat esta pronto para ser montado. A montagem do cansat deve comecar da placa GPS
até a placa CAM. E possivel também comecar a montar da placa COM até a GPS, mas iniciar
o processo do meio tornara dificil a integracdo. O conector da pilha de 9V nao deve ser
ligado antes de todos testes feitos, nem antes do envio do primeiro programa ao OBC.

O GGPEN, no seu programa de partilha de conhecimento em tecnologia e ciéncia
espacial, desenvolveu um laboratdrio para experimentos prdticos de montagem de cansats
(kit cansat). O laboratério é constituido por um cansat, multimetro, chave, pen drive e
todo componente electrénico necessario para a realizacdo de missdes predeterminadas. A
Figura 6.17 ilustra a mala do kit cansat. Em a) é possivel ver o cansat montado e em b) a
disposicdo dos elementos que compdem o laboratério. Os componentes do Kit cansat podem

ser verificados no anexo-1, e no anexo-2 tem-se a tabela de verificacdo do kit.

Figura 6.17 - a) Cansat montado; b) Mala do Kit Cansat
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6.4.1 Placa GPS
A Figura 6.18 ilustra a sequéncia do procedimento de montagem da placa GPS.
1. Preparar os componentes da placa GPS;
2. Instalar o Modulo NEO-6M;
3. Instalar os espacadores de 10mm com os parafusos, para fixacdo do GPS;
4. Use uma chave estrela para apertar os parafuso;
5. instalar os separadores de 20mm com um parafuso M3;

6. Resultado esperado.

ot

Figura 6.18 — Montagem da placa GPS

6.4.2 Placa PWR
A Figura 6.19 ilustra a sequéncia do procedimento de montagem da placa PWR.
1. Preparar os componente da placa PWR,;
2. Instalar o pin header.
3. Aplicar a fita-cola dupla-face, para fixacdo da bateria;
4. Instalar a batéria;
5. Unir a placa GPS com a placa PWR,;
6. Instalar os espacadores de 20mm. Instalar um pin header de 8 pinos;

7. Resultado esperado.
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Figura 6.19 — Montagem da placa PWR

6.4.3 Placa USR
A Figura 6.20 ilustra a sequéncia do procedimento de montagem da placa USR.
1. Preparar os componentes da placa USR;
2. Instalar dois pin-headers de 8 pinos;
3. Unir a placa PWR com a placa USR,;
4. Instalar os espagadores de 20mm;

5. Resultado esperado.

Nota: Os componentes na placa USR podem variar dependendo da missao escolhida.
Neste passo, ja se deve ter a missdo declarada e ter sido feito um estudo de que sensores
ou actuadores serdo incluidos na placa. Na placa tem pinos com interface SPI, 12C, pinos

analégicos e digitais, tensdo de 5 e 3.3V e ainda possibilidade de interface UART por
software.
6.4.4 Placa OBC
A Figura 6.21 ilustra a sequéncia do procedimento de montagem da placa OBC.
1. Preparar os componentes da placa OBC;

2. Inserir o arduino nano, seguindo a orientacdo dos pinos. Se o arduino for inserido

invertido, certamente queimara, podendo também danificar outros dispositivos;

3. Fixar devidamente o arduino;
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Figura 6.20 — Montagem da placa USR

4. Unir cuidadosamente a placa OBC com a placa USR. é comum nessa placa haver
alguma dificuldade em alinhar os pinos. Recomenda-se verificar se todos pinos estao
alinhados;

5. Instalar os espacadores de 20mm. Instalar um pin header de 8 pinos;
6. Resultado esperado;

7. Medir a continuidade nos pinos VCC, GND, Tx e Rx entre as placas GPS e OBC. Caso
ndo haja continuidade em algum pino significa que uma ligacao foi mal feita. Verifique
todos os passos anteriores.

6.4.5 Placa COM
A Figura 6.22 ilustra a sequéncia do procedimento de montagem da placa COM.
1. Preparar os componentes da placa COM;
2. Instalar o pin header de 6 pinos;
3. Unir a placa COM com a placa OBC;
4. Instalar os espacadores de 20mm;
5. Instalar a antena ao médulo APC220;

6. Resultado esperado.
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Figura 6.21 — Montagem da placa OBC
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Figura 6.22 — Montagem da placa COM

6.4.6 Placa CAM
A Figura 6.23 ilustra a sequéncia do procedimento de montagem da placa CAM.
1. Preparar os componentes da placa CAM,;
2. Instalar o pin header de 4 pinos;
3. Unir a placa CAM com a placa COM;

4. Instalar os espacadores de 20mm;
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5. Instalar os espacadores de suporte de 10mm;

6. Testar a continuidades entre os pinos. Testar a continuidade dos pinos GND/GND e
VCC/VCC entre a placa do GPS e a placa da camara.

Figura 6.23 — Montagem da placa CAM

6.5 Programacao e Testes

6.5.1 Programacao do OBC

A programacao do OBC é feita usando o arduino IDE [5]. Deve-se conectar o arduino

nano ao computador usando o cabo USB,

Medicao de Temperatura e Humidade Relativa

Para a realizacdo da missdo de Medicdo de Temperatura e Humidade Relativa, serd
necessario adicionar a placa USR o méodulo DHT11 [6]. Na Figura 6.25 ilustra o esquema
de ligacdo sugerido para implementacdo do sensor GY-91[8] e do DHT11. Para estd conexao

¢ importante referir que a alimentagdo do DHT11 (VCC) sera feita pelo pino A2 do arduino.
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Figura 6.25 — Esquema de ligacdo sugerido para a missao 1

Medicao de Concentracdo de Mondxido de Carbono

Para a realizacdo da missdo de Medicdo de Concentracdo de Mondxido de Carbono na
atmosfera serd necessario adicionar é placa USR o médulo MQ7 [7]. Na Figura 6.26 ilustra

o esquema de ligacdo sugerido para implementacdo do sensor GY-91 e do MQ?7.

WA J0A 00A X O

X} .
[eecocccoo |

M " W3S
oD 00n 0o

P
Z
—

VCC | GNDDO @ A0

Figura 6.26 - Esquema de ligagdo sugerido para a missdo 2
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Captacao de Fotos

A missdo de Captacdo de Fotos é feita usando a camara VC0706 e as fotos sdo
guardadas num cartdo micro SD. Essas fotos podem ser visualizadas a posterior num

computador. O exemplo de ligacdo sugerido é apresentado na Figura 6.27.

Figura 6.27 — Esquema de ligagdo sugerido para a missdo 3

6.5.2 Estacao Terrena

Para envio e recepc¢do de dados entre o cansat e o computador, foi desenvolvido uma
interface grafica (Figura 6.28). Os dados de telemetria recebidos do APC220 vém na forma
de pacotes. Esses dados precisam ser interpretados e distribuidos nas respectivas variaveis.
Essa operacdo € feita na interface Ground Station onde € possivel ver os dados de telemetria,
graficos, mapas e também enviar comandos.

Na drea de Comandos, ha dois botdes para controlo da camara, a label "Estado"mostra
os diferentes estados de operacdo da camara. O botdo "Zerar Altimetro"serve para fazer
um desconto (offset) no valor fornecido pelo sensor GY-91, possibilitando definir a altura
zero (altura de base) a partir de onde o cansat serd lancado. Os botdes 1, 2 e 3 sdo
botdes genéricos e programdveis. Ao clicar nesses botdes com o botdo esquerdo do rato
sdo enviadas as informacgoes programadas inicialmente (1, 2 ou 3) e ao clicar com o botao
direito, abrira duas caixas em que pode-se alterar o nome do botdo e a informacdo a ser
enviada.

No menu "CONEXAQ", tem as opcdes de conexio, escolha de velocidade (Baud Rate),
escolha da porta COM e um botao de actualizacdo de portas. No menu "SENSORES", deve-se
escolher qual é a missdo a ser cumprida. Deve-se escolher entre as op¢des "DHT11", "MQ7
CQO"ou "VCO706". Existe também o botdo Graficos"que habilita ou desabilita a exibicdo dos

graficos.
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CONEXAO SENSORES AJUDA

— Altitude

Camara Temperatura 27 °C

Humidade 51 %

CO Amount - PPM
Pressdo atm 1003.43 hPa
Altitude (m) 7253 m
Altitude Max 7295 m

Acel. X 0.00 g

Acel. Y -0.05 g
TM*27*51%1003.43%72.53% Acel Z 098 g
72.95%0.00%-0.05%-0.98%-

8.820313* 13.266928%

2.70*-0.41*-0.82* - Giro. X 270 °Is
8.820313* 13.266929*

Giro. Y -0.41 °Is
Giro. Z -0.82 °Is

Veloc. X m/s

Veloc. Y m/s

Veloc. Z m/s

Latitude -8.820313
Longitude 13.266929

Erros

Figura 6.28 — Ground Station
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Anexo 1

Componentes do Kit Cansat
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Anexo 2

Tabela de Verificacao (Check-List)

N° Item N° de Componentes M
1 Placa GPS 1
2 Placa do Sistema de Alimentacdo (PWR) 1
3 Placa USR (Payload) 1
4 Placa do Sistema de Computador de Bordo 1

(OBO)
5 Placa do Sistema de Comunicacdo (COM) 1
6 Placa Camara (CAM) 1
7 Modulo GPS NEO-6M (ou 8M) 1
8 Sensor GY-91 1
9 Sensor DHT11 1

10 Sensor MQ7 1
11 Arduino Nano 1
12 Modulo SD Card Reader 1
13 Modulo APC220 1
14 Céamara VC0703 1
15 Pin Header 6
16 Parafuso (+) M3 7
17 Espagador (parafuso fémea ¢ fémea) (10 7

mm)
18 Espagador (parafuso macho e fémea) (20 18
mm)

19 Pilha de 9V 2

20 Cabo USB 1

21 Multimetro 1

22 Chave estrela 1

23 | Cartdo de memoria micro SD com adaptador 1

24 USB Pendrive 1

25 Jumpers 2

26 Manual do Cansat 1
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